
Efficient Evolutionary Unsupervised Clustering

D.K. Tasoulis, V.P. Plagianakos and M.N. Vrahatis

Computational Intelligence Laboratory,
Department of Mathematics, University of Patras,

GR-26110 Patras, Greece.
{dtas,vpp,vrahatis}@math.upatras.gr

Abstract

Evolutionary clustering is a new trend in
cluster analysis, that has the potential
to provide high partitioning accuracy re-
sults. Traditional evolutionary techniques
applied in clustering are typically hin-
dered by the high cost involved in the
computation of the objective function. In
this paper we propose a novel objective
function, that is able to provide fitness
function values in sub-linear time. Next
we develop an evolutionary scheme, to
evolve cluster solutions. Moreover, we
demonstrate how this scheme can be uti-
lized to provide estimations for the num-
ber of clusters. Finally, by employing real
world datasets, we exhibit the high qual-
ity clustering results it can provide.

1 Introduction

Clustering is a fundamental step in the proce-
dure of transforming data to knowledge. It aims
at discovering groups (clusters) in a set of ob-
jects such that similarity among the objects in
the same group is higher than that of objects
belonging in different clusters.

The first references to clustering date as back
as the fourth century B.C. by Aristotle and
Theophrastos, but it was not until 1939, that
one of the first comprehensive foundations of
these methods was published [29].

The application domain of clustering tech-
niques is very wide including data mining [14],
text mining [10, 13], statistical data analy-
sis [2], compression and vector quantization [22],
global optimization [6, 28] and web personaliza-
tion [23].

Clustering is a hard problem, since even the
simplest clustering problems are known to be
NP-Hard [1]. The Euclidean k-center prob-
lem [1] in the plane is NP-Hard [19]. In fact, it
is NP-Hard to approximate the two-dimensional

k-center problem even under the L∞-metric [19].
Clustering algorithms are traditionally cate-

gorized into three main categories, Hierarchical,
Partitioning [25] and Distance-based. Hierarchi-
cal clustering algorithms construct hierarchies of
clusters in a top-down (divisive) or bottom-up
(agglomerative) fashion. Hierarchical cluster-
ing algorithms have proved to yield high qual-
ity results especially for applications involving
clustering text collections. None the less, their
high computational requirements, usually pre-
vents their usage in real life applications, where
the number of samples and their dimensional-
ity is typically high (the cost is quadratic to the
number of samples).

Partitioning clustering algorithms, start from
an initial clustering (that can be randomly
formed) and create partitionings by iteratively
adjusting the clusters based on the distance of
the data points from a representative member
of the cluster. The most commonly used par-
titioning clustering algorithm is k-means. k-
means initializes k centers and iteratively assigns
each data point to the cluster whose centroid
minimizes the euclidean distance from the data
point. k-means type algorithms can give good
clustering results at low cost, since their run-
ning time is proportional to kn. However, their
results depend heavily on their initialization and
it converges to arbitrary local optima.

Finally, distance based clustering algorithms
create a partitioning by considering neighbors of
data points. DBSCAN [24] is a distance-based
clustering algorithm that has proved quite ef-
fective for spatial databases. Clusters are con-
sidered as high density neighborhoods of data
points. Although the density parameter is very
crucial for DBSCAN’s success, recently pro-
posed heuristics appear to give high quality re-
sults. The computational complexity of DB-
SCAN comes up to O(n log(n)) under the as-
sumption that the data are organized in a spatial
index (R∗-tree).

Recently, many researchers investigate the

234

Fifth annual UK Workshop on Computational Intelligence (UKCI-05), September 5-7, 2005,
University of London, London, UK, B. Mirkin and G. Magoulas (eds.), pp.234-242, 2005

application of evolutionary clustering to cluster
analysis.

The application of evolutionary clustering
has been recently investigated by numerous re-
searchers. Evolutionary clustering, motivated
by natural evolution, typically encodes a solu-
tion to the clustering problem as a chromosome.
Next, by employing evolutionary operators and
a population of solutions the algorithm probes
the search space to find a globally optimum par-
tition of the data. The most commonly used
evolutionary operators are: selection, recombi-
nation, and mutation. Each operator transforms
one or more input chromosomes into one or more
output chromosomes. A fitness function eval-
uated on a chromosome determines a chromo-
some’s likelihood of surviving into the next gen-
eration. In early approaches [8, 17], chromo-
somes encoded the partition of n objects into K
clusters and Genetic Algorithms were employed
to find the best partition. However, the sensitiv-
ity of GAs to the selection of various parameters
such as population size, crossover and mutation
probabilities, and the difficulties of the represen-
tation scheme, have presented a major problem.
Hybrid approaches [4] demonstrated that they
can perform better than the simple GA.

However, it is possible to represent the clus-
tering procedure as an optimization problem of
locating the optimal centroids of clusters. Thus,
any kind of evolutionary technique can be em-
ployed since a possible clustering solution has
a direct representation as a real-valued vector
of the centroids. Previous approaches employed
Evolutionary Strategies [5], Evolutionary Pro-
gramming [15], and recently Particle Swarm Op-

timization [30]. All these approaches demon-
strated that it is possible to obtain high quality
partitions, but at the expense of a high compu-
tational cost.

In this paper we try to tackle the high com-
putational cost of traditional evolutionary tech-
niques by introducing a new fitness criterion.
This criterion is based on a windowing tech-
nique already used in other clustering algo-
rithms [27, 31]. The proposed approach is inde-
pendent of the evolutionary technique employed.
In this paper we employ the Differential Evolu-

tion algorithm as recent works [20] demonstrate
its superior performance on such problems.

A critical and open issue in cluster analysis,
is the determination of the number of clusters
present in a dataset. The evolutionary cluster-
ing techniques proposed so far, require from the
user to specify the number of clusters present in
the data prior to the execution of the algorithm.

The proposed approach can provide an approx-
imation to the number of clusters present in a
dataset.

The rest of the paper is organized as follows.
In Section 2, we analyze the proposed fitness
function. Next, in Section 3 we describe the pro-
posed evolutionary scheme and in Section 4 we
present experimental results that demonstrate
the applicability of the proposed approach. The
paper ends with concluding remarks and discus-
sion in Section 5.

2 Window Density Function

Let the data set be a set X = {x1, . . . , xn},
where xj is a data vector in the d dimensional
euclidean space Rd. A k clustering of X is a
partition C of X into k disjoint groups Ci, for
i = 1, . . . , k. The clustering problem constitutes
of the determination of a partition of X which is
optimal with respect to a function f that quan-
tifies the goodness of the partition.

Different statistical functions have been pro-
posed for f [18, 32]. But in all the previous
cases at least a full scan over the dataset is nec-
essary to compute the function value for a spe-
cific instance. Evolving a population using such
a fitness criterion can be expensive in terms of
computational cost, compared to k-means like
approaches that typically do not require more
than 10 to 20 scans of the dataset.

In the present contribution we propose the
Window Density Function (WDF) that over-
comes the aforementioned limitations:
Definition 1: Let a d-range of size a ∈ R and
center z ∈ Rd, be the orthogonal range [z1 −
a, z1 +a]×· · ·× [zd −a, zd +a]. Assume further,
that the set Sa,z, with respect to the set X , is
defined as:

Sa,z = {y ∈ X : zi−a 6 yi 6 zi+a, ∀i = 1, . . . , d}.

Then the Window Density Function WDF for
the set X , with respect to a given size a ∈ R, is
defined as:

WDFa(z) = |Sa,z|. (1)

In other words, WDF represents the number
of points from the dataset X , that reside in a
window of size a around z. WDF is a mean-
ingful clustering objective function, since as the
center of a d-range, z, moves to the center of the
cluster the number of points around it should
increase. As it is obvious the size a, is critical
to whole procedure since it determines the lo-
cation of the minima of the objective function.

235

Figure 1: Dataset DSet1

To illustrate this we employ the dataset Dset1
exhibited in Fig. 1. This dataset is composed
of 500 points organized in 5 clusters with 100
points each. Each cluster is constructed by sam-
pling 100 points from a two dimensional Gaus-
sian distribution. The mean of each distribution
was randomly scattered in the [0, 200]2 range,
and the covariance matrices were randomly gen-
erated by obtaining for each element of the ma-
trix a random number between 1 and 2.

In Fig. 2, the 3d-plots of WDF are provided
to visualize the impact of the parameter a. As
the value of a increases, the extreme points of
WDF tend to merge. When a = 1 there exist
5 maxima, equal to the number of clusters. On
the other hand, when a = 10, the three maxima
corresponding to the 3 closest clusters previously
identified merge to just one.

The most important feature of the proposed
density function is that it is not necessary to
scan the entire dataset to obtain a fitness for a
specific object. In particular, the computation of
WDF is the well studied Computational Geom-
etry Orthogonal Range Search Problem. Numer-
ous Computational Geometry techniques have
been proposed to address this problem. All
these techniques employ a preprocessing stage
at which they construct a data structure stor-
ing the patterns. This data structure allows
them to answer range queries fast. In Table 1
the computational complexity of various such
approaches is summarized. In detail, for appli-
cations of very high dimensionality, data struc-
tures like the Multidimensional Binary Tree [21],
and Bentley and Maurer [7] seem more suitable.
On the other hand, for low dimensional data
with a large number of points the approach of
Alevizos [3] appears more attractive.

3 Evolutionary Clustering under

the WDF

Objective Function

Evolutionary algorithms (EAs) have their roots
in the stochastic search methods scientific do-
main, and try to mimic the natural biological
evolution process. Utilizing the principle of sur-
vival of the fittest they try to evolve an ini-
tial population of potential solutions to obtain a
globally optimal result. In this paper, from the
broad field of EAs we employ Differential Evolu-
tion [26]. Of course our approach can be applied
using any EA.

DE evolves the population of the potential so-
lutions (individuals), using three operators, mu-

tation, recombination and selection. An individ-
ual, in the clustering context, is expressed using
a predetermined number of d–dimensional vec-
tors that represent the centers of the d–ranges,
that constitute the clustering result. The fit-
ness of each individual is measured by the sum
of WDF function over all the d–ranges, under
a fixed value of the parameter a. The remain-
ing procedure of the DE algorithm remains un-
changed.

At the first step, all individuals are initial-
ized by using a random number generator. At
the mutation step, for each i = 1, . . . , P (P rep-
resents the size of the population) a new mu-
tant weight vector vi

g+1
is generated by combin-

ing vectors, randomly chosen from the popula-
tion, and exploiting one of the mutation opera-
tors (2)–(6):

vi
g+1

= ωbest
g + µ(ωr1

g − ωr2

g), (2)

vi
g+1

= ωr1

g + µ(ωr2

g − ωr3

g), (3)

vi
g+1

= ωi
g + µ(ωbest

g − ωi
g)

+µ(ωr1

g − ωr2

g), (4)

vi
g+1

= ωbest
g + µ(ωr1

g − ωr2

g) +

µ(ωr3

g − ωr4

g), (5)

vi
g+1

= ωr1

g + µ(ωr2

g − ωr3

g) +

µ(ωr4

g − ωr5

g), (6)

where ωr1

g , ωr2

g , ωr3

g , ωr4

g and ωr5

g are randomly

selected vectors, different from ωi
g, ωbest

g is the
best member of the current generation. Fi-
nally, the positive mutation constant µ controls
the magnification of the difference between two
weight vectors. For the rest of the paper, we
refer to the differential evolution algorithm that
uses Eq. (2) as the mutation operator with DE1,
DE2 for the algorithm that uses Eq. (3), and so
on.

Having constructed the mutant vectors, the

236

Figure 2: 3D-Plot of WDF for Dset1 and a = 1, 5, 10 from left to right

Preprocessing

Method Time Space Query time

Multidim. Binary Tree [21] θ (dn log n) θ (dn) O
(

s + dn1−1/d
)

Range Tree [21] O
(

n logd−1 n
)

O
(

n logd−1 n
)

O
(

s + logd n
)

Wilard and Lueeker [21] O
(

n logd−1 n
)

O
(

n logd−1 n
)

O
(

s + logd−1 n
)

Chazelle [11] O
(

n logd−1 n
)

O
(

n log
d−1 n

log log n

)

O
(

s + logd−1 n
)

Chazelle and Guibas [12] O
(

n logd+1 n
)

O
(

n logd n
)

O
(

s + logd−2 n
)

Alevizos [3] O
(

n logd−1 n
)

O
(

n logd−1 n
)

O
(

s + logd−2 n
)

Bentley and Maurer [7] O
(

n2d−1
)

O
(

n2d−1
)

O (s + d log n)

Bentley and Maurer [7] O
(

n1+ε
)

O
(

n1+ε
)

O (s + log n)
Bentley and Maurer [7] O (n logn) O (n) O (nε)

Table 1: Methods for orthogonal range search.

recombination step is initiated that constructs a
trial vector for each individual. At the recombi-
nation step, for each component j = 1, 2, ..., L of
the mutant vector a random number r ∈ [0, 1] is
generated. If r is smaller than the predefined re-
combination constant p, the j-th component of
the mutant vector vi

g+1
becomes the j-th com-

ponent of the trial vector. Otherwise, the j-th
component of the target vector is selected as the
h–th component of the trial vector. Finally, the
resulting trial vector replaces the initial individ-
ual if it yields a better WDF function value.
Otherwise it is discarded. This constitutes the
selection step.

As it is obvious the evolutionary optimiza-
tion procedure described above aims at discov-
ering the set of d-ranges that include as many
points from the dataset as possible. Thus a sin-
gle execution is able to determine a clustering
result. Note that in the final clustering solution
empty d-ranges may appear, or even d-ranges
that overlap. This, instead of becoming a prob-
lem permits the approximation of the number
of clusters, by borrowing the merge operation
of the unsupervised k-windows clustering algo-

rithm [27]. During this step, for each pair of
overlapping windows, the number of patterns
that lie in their intersection is computed. With
respect to the proportion of this number to the
total number of points contained in each win-
dow, the algorithm can decide whether to:

(a) Ignore one window if the proportion is very
high.

(b) Consider the windows to contain parts of
the same cluster if the proportion is rela-
tively high.

(c) Consider the windows to capture different
clusters, if the proportion is low.

An example of this operation is exhibited in
Fig. 3.

A high level description of the proposed
algorithmic scheme follows:

DE Unsupervised Clustering (DEUC)

1. Construct a data structure
for the storing of the data.

1. Set the parameter a of WDF function.
2. Repeat

237

W4

W2
W3(b)(a)

W1
(c)

W6

W5

Figure 3: (a) W1 and W2 satisfy the similarity
condition and W1 is deleted. (b) W3 and W4 sat-
isfy the merge operation and are considered to
belong to the same cluster. (c) W5 and W6 have
a small overlapment and capture two different
clusters.

3. Execute the DE algorithm.
5. Until a sufficient part of the dataset

is covered or a maximum number
or iterations is performed.

6. Merge the resulting d–ranges
7. Report the final clusters.

4 Presentation of Experimental

Results

The applicability of the proposed algorithm is
evaluated using four diferent datasets. The first
one is the two dimensional dataset Dset1 demon-
strated in Fig. 1. This is an easy to handle
dataset, and is used to provide a visual inspec-
tion of the clustering result provided by the algo-
rithm. Note that in all the experiments reported
in this section the population was set to 20 in-
dividuals, and a maximum of 200 epochs was
allowed. The parameters µ and p of DE were
set to 0.6, and 0.8, respectively, in all experi-
ments. Moreover if the d–ranges of best individ-
ual discovered contained more than 90% of the
total points DE execution terminated. The ap-
plication of the DEUC algorithm over the Dset1
dataset with the parameter a obtaining the val-
ues 1, 2, 5, 10 is exhibited in Fig. 4. These results
were obtained, by stopping the iterative execu-
tions of DE when more than 90% of the dataset
was covered. Each individual encoded the cen-
ter of five d-ranges. Comparing the clustering
result, with the 3D-plots of the WDF function in
Fig. 2, it is obvious DEUC is able to detect the
extrema of WDF and form a clustering result
that is on accordance with the form of WDF.
The colors in the plots exhibit the different clus-
ter label of the points that were assigned with re-
spect to the closest d-range under the Euclidean
metric. It is obvious that DEUC is able to pro-
vide visually optimal clustering results when a

Figure 4: The clustering result of DEUC for a =
1, 3, 5, 10

ranges from 1 to 5. On the other hand, when a
is too large the adjacent clusters are merged to
a single cluster by the merging procedure.

Comparing the results of DEUC involves the
usage of a clustering algorithm that can ap-
proximate the number of clusters. To compare
the results of DEUC with other approaches we
employ the DBSCAN clustering algorithm [24].
This choice of algorithm is motivated by the fact
that DBSCAN computes the number of points
(MinPts) that reside in a hypersphere of size
Eps. Thus, the Eps parameter of DBSCAN is
strongly connected with a parameter of WDF
function. The execution of DBSCAN on Dset1,
setting MinPts = 5, (anything with less than 5
points in an Eps neighborhood around it is con-
sidered noise), and for Eps obtaining the values
Eps = 1, 3, 5, 10 is exhibited in Fig. 5. Similarly
in this case the colors designate different cluster
labels, and the red crosses represent points rec-
ognized as noise. From the plots we can see that
DBSCAN is more sensitive to the value of Eps
than DEUC is on the value of a. Moreover, for
the DBSCAN to be able to recognize the three
different adjacent clusters a very delicate selec-
tion of Eps and MinPts is needed.

Next, in Fig. 6, we investigate the ability of
DEUC to approximate the number of clusters.
To this end we apply DEUC using 3,5,10 and
15 windows. As illustrated, when the number
of d-ranges is less than the true number of clus-
ters, each d-range is located over a minimum
of WDF, but due to the inability to cover all
the minima the cluster labels are incorrect. On
the other hand, as the number of d-ranges grows
larger than the real number of clusters, the algo-
rithm has no problem of detecting the five clus-
ters, since the merging procedure assigns cor-
rectly the cluster labels.

The previous results refer to a simple dataset,

238

Figure 5: The clustering result of DBSCAN for
Eps = 1, 3, 5, 10

Figure 6: The impact on the clustering result
of different number of d-ranges (3,5,10 and 15)
when a = 3

and thus do not provide any evidence about
the quality of the clustering result in difficult
cases. To this end, to examine the quality of the
partitioning results we employ two real world
datasets. The first one considered is the four
dimensional Iris dataset Dsetiris from the UCI
Machine Learning Repository [9]. This dataset
is among the best known databases to be found
in the pattern recognition literature. It contains
150 records of four features. The features are
measurements of the sepal and petal length and
width of three different types of the iris plant
(Setosa, Versicolour and Virginica). The 150
records are equally distributed in three classes,
each corresponding to a different type of the
plant. To evaluate the clustering result we re-
solve to the correspondence they have to the true
cluster labels of the patterns. Ideally, each clus-
ter should contain patterns that belong to a sin-
gle type of the Iris plant. After normalizing the
data in the [10, 100]4 range, DEUC was executed
100 times, using a population of 20 individuals
while each individual encoded 5 d–ranges. In

most cases 3 clusters were recognized by the al-
gorithm, but there were also cases that resulted
in 4 and 5 clusters. Moreover, as a compari-
son measure we executed DBSCAN using all the
combinations of values in [1, 10] with a step of
1, for the Eps and MinPts parameters, yielding
100 different clustering results. In the box-plots
exhibited in Fig. 7, we summarize the results
with respect to the partitioning accuracy. Each
box-plot depicts the obtained values for the clas-
sification accuracy, in the 100 experiments. The
box has lines at the lower quartile, median, and
upper quartile values. The lines extending from
each end of the box (whiskers) exhibit the range
covered by the remaining data. The outliers,
i.e. the values that lie beyond the ends of the
whiskers, are represented with crosses. Notches
represent a robust estimate of the uncertainty
about the median. As it is obvious from Fig. 7,
all the different DE operators are able to cap-
ture the dynamics of the dataset and result in
high partitioning accuracy. Among all the oper-
ators DE3 exhibits the most robust behavior and
is able to provide the best results even with re-
spect to outliers. On the other hand, DBSCAN
is restrained from providing high accuracy re-
sults since in this dataset two of the classes are
somewhat close and DBSCAN tends to merge
them to a single cluster, thus destroying its clas-
sification accuracy.

The next dataset studied DsetL is the well–
known and publicly available acute leukemia
dataset provided by the center of genome re-
search of the Whitehead Institute [16]. It is a
well characterized dataset already used in nu-
merous studies. This dataset contains mRNA
expression profiles from 72 leukemia patients
aiming at the development of an expression–
based classification method for acute leukemia.

 65

 70

 75

 80

 85

 90

 95

 100

DBSCANDE 5DE 4DE 3DE 2DE 1

Figure 7: Box-plot of the classification accuracy
for the Iris dataset

239

Each sample is measured over 7129 genes. The
samples contain 47 acute myeloid leukemia
(ALL) samples and 25 acute lymphoblastic
leukemia (AML) samples. From the 7129 genes,
the 50 most highly correlated genes with the
ALL–AML class distinction, were selected as
in [16]. Similarly, with the Iris dataset, all the
values were normalized in the [10, 100]50 range.
Next 100 experiments of DEUC were performed
and the partitioning accuracy of the clusters
from each run with respect to the AML and
ALL label of the patterns was recorded. The
DBSCAN algorithm was also executed on the
same dataset using all the combinations of val-
ues in [40, 50] and [1, 10] with a step of 1, for the
Eps and MinPts parameters respectively, yield-
ing 100 different clustering results. The box-
plots in Fig. 8, exhibit the obtained results. In
this case, the DEUC algorithm reported 4-6 final
clusters, with the classification accuracy obtain-
ing values over 95 a few times. In this case DE1
managed to performed better among the differ-
ent variants of DE. The DBSCAN algorithm this
time exhibited quite high classification results as
the DEUC algorithm. It should be noted, how-
ever, that it was very difficult to establish a good
range for the Eps parameter due to the high di-
mensionality of the dataset (50).

 65

 70

 75

 80

 85

 90

 95

 100

DBSCANDE 5DE 4DE 3DE 2DE 1

Figure 8: Box-plot of the classification accuracy
for the Acute Leukemia dataset DsetL

The final set of experiments aims to analyze
the computational demands of the proposed al-
goritm. These can be analyzed by the number
of function evaluations it requires to provide a
clustering result. As already mentioned for each
function evaluation a range search operation
over the dataset is performed. Measuring the
total number of range searches that are needed
is a direct indication of the computational effort
required. To this end, we constructed Dset2 in a
similar way with Dset1, but with a size ranging

from 5000 to 30000 points. The mean number
of range searches required over 100 executions of
DEUC, for all mutation operators is depicted in
Fig. 9. From this figure it is clear that all the
DE operators require a steady number of range
searches to converge, irrespective of the dataset
size. When the dataset size is small (5000) the
number of ranges searches is relatively high. It
even exceeds the total number of points. DB-
SCAN for each dataset requires at least n range
searches to finalize where n is the number of
points in the dataset. Thus, for small datasets
DEUC appears computationally expensive. On
the other hand, as the dataset size increases, the
efficiency of DEUC also increases. For exam-
ple for 30000 points in the dataset DE1 requires
less than 6000 range searches, that is five times
smaller than the DBSCAN requirements.

 4000

 5000

 6000

 7000

 8000

 9000

 10000

 11000

 5000 10000 15000 20000 25000 30000

R
an

ge
 s

ea
rc

he
s

pe
rfo

rm
ed

Dataset size in number of points

DE 1
DE 2
DE 3
DE 4
DE 5

Figure 9: Mean number of range searches re-
quired for variable dataset size.

5 Concluding Remarks and

Discussion

Many partitioning clustering algorithms based
on evolutionary techniques have been proposed
to tackle the problem of finding the optimal par-
tition of a data set. Most of these approaches
firstly encode a solution to the clustering prob-
lem as a chromosome, and then treat the cluster-
ing task as an optimization problem of locating
the optimal centroids of clusters. The fitness of
clustering solutions can be evaluated using var-
ious statistical functions [18, 32].

In the present contribution we present a new
fitness function, that apart from being a mean-
ingful clustering objective function, can be eval-
uated in sub-linear time with respect to the size
of the dataset. This is achieved by utilizing
Computational Geometry data structures.

240

Moreover, we propose an evolutionary
scheme based on Differential Evolution that also
has the ability to approximate the number of
clusters and provide high quality partitions as
it is evident from the experimental results pro-
vided. The proposed scheme can be applied us-
ing any evolutionary algorithm. In this paper
we chose Differential Evolution, and aim to in-
vestigate the performance of different EAs in a
future work. Furthermore, we wish to present
an adaptive scheme, that will also be able to
provide estimations for the parameter a of the
WDF function.

References

[1] P. K. Agarwal and C. M. Procopiuc. Ex-
act and approximation algorithms for clus-
tering (extended abstract). In 9th Sympo-

sium on Discrete Algorithms, pages 658–
667, 1998.

[2] M. S. Aldenderfer and R. K. Blashfield.
Cluster Analysis, volume 44 of Quantitative

Applications in the Social Sciences. SAGE
Publications, London, 1984.

[3] P. Alevizos. An algorithm for orthogonal
range search in d > 3 dimensions. In Pro-

ceedings of the 14th European Workshop on

Computational Geometry. Barcelona, 1998.

[4] G. P. Babu and M. N. Murty. A near opti-
mal initial seed value selection in k-means
algorithm using a genetic algorithm. Pat-

tern Recogn. Lett., 14(10):763–769, 1993.

[5] G. P. Babu and M. N. Murty. Clustering
with evolution strategies. Pattern Recogn.,
27:321–329, 1994.

[6] R. W. Becker and G. V. Lago. A global
optimization algorithm. In Proceedings of

the 8th Allerton Conference on Circuits and

Systems Theory, pages 3–12, 1970.

[7] J. L. Bentley and H. A. Maurer. Efficient
worst-case data structures for range search-
ing. Acta Informatica, 13:1551–68, 1980.

[8] J. N. Bhuyan, V. V. Raghavan, and K. E.
Venkatesh. Genetic algorithm for clustering
with an ordered representation. In Fourth

International Conference on Genetic Algo-

rithms, page 408415, 1991.

[9] C. Blake and C. Merz. UCI repository of
machine learning databases, 1998.

[10] D. Boley. Principal direction divisive parti-
tioning. Data Mining and Knowledge Dis-

covery, 2(4):325–344, 1998.

[11] B. Chazelle. Filtering search: A new ap-
proach to query-answering. SIAM J. Com-

put, 15(3):703–724, 1986.

[12] B. Chazelle and L. J. Guibas. Fractional
cascading: Ii applications. Algorithmica,
1:163–191, 1986.

[13] I. S. Dhillon and D. S. Modha. Con-
cept decompositions for large sparse text
data using clustering. Machine Learning,
42(1):143–175, Jan 2001.

[14] U. M. Fayyad, G. Piatetsky-Shapiro, and
P. Smyth. Advances in Knowledge Discov-

ery and Data Mining. MIT Press, 1996.

[15] D. B. Fogel and P. K. Simpson. Evolv-
ing fuzzy clusters. In International Confer-

ence on Neural Networks, pages 1829–1834,
1993.

[16] T. Golub, D. Slomin, P. Tamayo, C. Huard,
M. Gaasenbeek, J. Mesirov, H. Coller,
M. Loh, J. Downing, M. Caligiuri,
C. Bloomfield, and E. Lander. Molecular
classification of cancer: Class discovery and
class prediction by gene expression monitor-
ing. Science, 286:531–537, 1999.

[17] D. Jones and M. A. Beltramo. Solving par-
titioning problems with genetic algorithms.
In Fourth International Conference on Ge-

netic Algorithms, page 442449, 1991.

[18] F. H. C. Marriott. Optimisation methods of
cluster analysis. Biometrics, 69(2):417422,
1982.

[19] N. Megiddo and K. J. Supowit. On
the complexity of some common geomet-
ric problems. SIAM Journal on Computing,
13:182–196, 1984.

[20] S. Paterlini and T. Krink. Differential
evolution and particle swarm optimization
in partitional clustering. Computational

Statistics and Data Analysis, 2005. To ap-
pear.

[21] F. Preparata and M. Shamos. Compu-

tational Geometry. Springer Verlag, New
York, Berlin, 1985.

241

[22] V. Ramasubramanian and K. Paliwal. Fast
k-dimensional tree algorithms for nearest
neighbor search with application to vector
quantization encoding. IEEE Transactions

on Signal Processing, 40(3):518–531, 1992.

[23] M. Rigou, S. Sirmakessis, and A. Tsaka-
lidis. A computational geometry approach
to web personalization. In IEEE Interna-

tional Conference on E-Commerce Technol-

ogy (CEC’04), pages 377–380, San Diego,
California, 2004.

[24] J. Sander, M. Ester, H.-P. Kriegel, and
X. Xu. Density-based clustering in spatial
databases: The algorithm gdbscan and its
applications. Data Mining and Knowledge

Discovery, 2(2):169–194, 1998.

[25] M. Steinbach, G. Karypis, and V. Kumar.
A comparison of document clustering tech-
niques, 2000. In KDD Workshop on Text
Mining.

[26] R. Storn and K. Price. Differential evo-
lution – a simple and efficient adaptive
scheme for global optimization over contin-
uous spaces. Journal of Global Optimiza-

tion, 11:341–359, 1997.

[27] D. K. Tasoulis and M. N. Vrahatis. Un-
supervised clustering on dynaic databases.
Pattern Recognition Letters, 2005. to ap-
pear.

[28] A. Torn and A. Zilinskas. Global Optimiza-

tion. Springer-Verlag, Berlin, 1989.

[29] C. Tryon. Cluster Analysis. Ann Arbor,
MI: Edward Brothers, 1939.

[30] D. W. van der Merwe A. P. Engelbrecht.
Data clustering using particle swarm op-
timization. In Congress on Evolutionary

Computation, pages 215–220, Canberra,
Australia, 2003.

[31] M. N. Vrahatis, B. Boutsinas, P. Alevizos,
and G. Pavlides. The new k-windows algo-
rithm for improving the k-means clustering
algorithm. Journal of Complexity, 18:375–
391, 2002.

[32] M.-S. Yang and K.-L. Wu. A similarity-
based robust clustering method. IEEE

Transactions on Pattern Analysis and Ma-

chine Intelligence, 26(4):434–448, 2004.

242

	body.pdf
	sub16_Y0nXUBuV.pdf
	Introduction
	Searching for a Bayesian Network Structure
	Searching in the Space of Equivalence Classes
	Techniques for Searching through Equivalence Classes

	Generically Scoring a Move in the State Space of Equivalence Classes of DAGs
	Proof of Validity
	Correctness of score-move
	Correctness of orient-arcs
	Complexity of Algorithm

	Experimental Results
	Conclusions

	sub44_ODOjM6ax.pdf
	Figure 2: Visualization of a fuzzy partition color-map.
	Table I: Number of clusters of the best c-partitions chosen

	sub41_PXMuC1tk.pdf
	Introduction
	Hierarchical Topological Clustering
	Growing Neural Gas
	TreeGNG

	Stock Market Structure
	Stock market data
	Results
	Conclusion
	References

	sub37_sV2Q8eAb.pdf
	Abstract
	1. Introduction
	2.1. Asymmetric Word Similarity Matrix
	2.1.1 Mass Assignment Theory
	2.1.2 Semantic Unification
	2.2. Document Clustering

	3.1 Results and Discussion
	3.2 Hypernyms
	3.2.1 Hypernym Weighing Scheme

	3.3 Synonyms and Antonyms
	3.5 Document Clustering
	In this paper we have proposed a novel method for computing

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 500
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.80000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308030d730ea30d730ec30b9537052377528306e00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /FRA <FEFF004f007000740069006f006e007300200070006f0075007200200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020005500740069006c006900730065007a0020004100630072006f0062006100740020006f00750020005200650061006400650072002c002000760065007200730069006f006e00200035002e00300020006f007500200075006c007400e9007200690065007500720065002c00200070006f007500720020006c006500730020006f00750076007200690072002e0020004c00270069006e0063006f00720070006f0072006100740069006f006e002000640065007300200070006f006c0069006300650073002000650073007400200072006500710075006900730065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e00650020007100750061006c00690074006100740069007600200068006f006300680077006500720074006900670065002000410075007300670061006200650020006600fc0072002000640069006500200044007200750063006b0076006f0072007300740075006600650020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e00200042006500690020006400690065007300650072002000450069006e007300740065006c006c0075006e00670020006900730074002000650069006e00650020005300630068007200690066007400650069006e00620065007400740075006e00670020006500720066006f0072006400650072006c006900630068002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e00200045007300740061007300200063006f006e00660069006700750072006100e700f50065007300200072006500710075006500720065006d00200069006e0063006f00720070006f0072006100e700e3006f00200064006500200066006f006e00740065002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e0067002000740069006c0020007000720065002d00700072006500730073002d007500640073006b007200690076006e0069006e0067002000690020006800f8006a0020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e00200044006900730073006500200069006e0064007300740069006c006c0069006e0067006500720020006b007200e600760065007200200069006e0074006500670072006500720069006e006700200061006600200073006b007200690066007400740079007000650072002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f00670065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000610066006400720075006b006b0065006e0020006d0065007400200068006f006700650020006b00770061006c0069007400650069007400200069006e002000650065006e002000700072006500700072006500730073002d006f006d0067006500760069006e0067002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e002000420069006a002000640065007a006500200069006e007300740065006c006c0069006e00670020006d006f006500740065006e00200066006f006e007400730020007a0069006a006e00200069006e006700650073006c006f00740065006e002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200071007500650020007000650072006d006900740061006e0020006f006200740065006e0065007200200063006f007000690061007300200064006500200070007200650069006d0070007200650073006900f3006e0020006400650020006d00610079006f0072002000630061006c0069006400610064002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e0020004500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007200650071007500690065007200650020006c006100200069006e0063007200750073007400610063006900f3006e0020006400650020006600750065006e007400650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e0020004e00e4006d00e4002000610073006500740075006b0073006500740020006500640065006c006c00790074007400e4007600e4007400200066006f006e0074007400690065006e002000750070006f00740075007300740061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007000720065007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e002000510075006500730074006500200069006d0070006f007300740061007a0069006f006e006900200072006900630068006900650064006f006e006f0020006c002700750073006f00200064006900200066006f006e007400200069006e0063006f00720070006f0072006100740069002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006800f800790020007500740073006b00720069006600740073006b00760061006c00690074006500740020006600f800720020007400720079006b006b002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e00200044006900730073006500200069006e006e007300740069006c006c0069006e00670065006e00650020006b0072006500760065007200200073006b00720069006600740069006e006e00620079006700670069006e0067002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006600f60072002000700072006500700072006500730073007500740073006b0072006900660074006500720020006100760020006800f600670020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e00200044006500730073006100200069006e0073007400e4006c006c006e0069006e0067006100720020006b007200e400760065007200200069006e006b006c00750064006500720069006e00670020006100760020007400650063006b0065006e0073006e006900740074002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f0072002000680069006700680020007100750061006c0069007400790020007000720065002d007000720065007300730020007000720069006e00740069006e0067002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e002000540068006500730065002000730065007400740069006e006700730020007200650071007500690072006500200066006f006e007400200065006d00620065006400640069006e0067002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

