2388

The New Window Density Function for Efficient Evolutionary Unsupervised
Clustering

Dimitris K. Tasoulis
Computational Intelligence Laboratory,
Department of Mathematics, University of Patras,
GR-26110 Patras, Greece.
dtas@math.upatras.gr

Abstract- Evolutionary clustering is a recent trend in
cluster analysis, that has the potential to yield high parti-
tioning accuracy results. Traditional evolutionary tech-
niques applied in clustering are typically hindered by
the high cost involved in the computation of the objec-
tive function. In this paper we propose a novel objective
function, that can provide fitness function values in sub-
linear time. Next we develop an evolutionary scheme, to
evolve cluster solutions and demonstrate how the num-
ber of clusters can be estimated from the final result. Fi-
nally, by employing real world datasets, we exhibit the
high quality clustering results that this sceme can pro-
vide.

1 Introduction

Clustering is a fundamental step in the process of trans-
forming data to knowledge. It aims at discovering groups
(clusters) in a set of objects such that similarity among the
objects in the same group is higher than that of objects be-
longing to different clusters.

The first references to clustering date as back as the
fourth century B.C. by Aristotle and Theophrastos, but it
was not until 1939, that one of the first comprehensive foun-
dations of these methods was published [30].

The application domain of clustering techniques is very
wide including data mining [14], text mining [10, 13], sta-
tistical data analysis [2], compression and vector quantiza-
tion [23], global optimization [6, 29] and web personaliza-
tion [24].

Clustering is a hard problem, since even the simplest
clustering problems are known to be NP-Hard [1]. The Eu-
clidean k-center problem [1] in the plane is NP-Hard [20].
In fact, it is NP-Hard to approximate the two-dimensional
k-center problem even under the L . -metric [20].

Clustering algorithms are traditionally categorized into
three main categories, Hierarchical, Partitioning [26] and
Distance-based. Hierarchical clustering algorithms con-
struct hierarchies of clusters in a top-down (agglomerative)
or bottom-up (divisive) fashion. Hierarchical clustering al-
gorithms have proved to yield high quality results espe-
cially for applications involving clustering text collections.
None the less, their high computational requirements, usu-
ally limits their applicability in real life applications, where
the number of samples and their dimensionality is typically
high (the cost is quadratic to the number of samples).

Partitioning clustering algorithms, start from an initial

0-7803-9363-5/05/$20.00 ©2005 IEEE.

Michael N. Vrahatis
Computational Intelligence Laboratory,
Department of Mathematics, University of Patras,
GR-26110 Patras, Greece.
vrahatis@math.upatras.gr

clustering (that can be randomly formed) and create parti-
tionings by iteratively adjusting the clusters based on the
distance of the data points from a representative member
of the cluster. The most commonly used partitioning clus-
tering algorithm is k-means. This algorithm initializes %
centers and iteratively assigns each data point to the cluster
whose centroid minimizes the euclidean distance from the
data point. Algorithms of this type can give good clustering
results at low cost, since their running time is proportional to
kn, where n is the number of patterns present in the dataset.
However, their results rely heavily on their initialization and
they can converge to arbitrary local optima.

Distance based clustering algorithms create a partition-
ing by considering neighbors of data points. DBSCAN [25]
is a distance-based clustering algorithm that has proved
quite effective for spatial databases. Clusters are considered
as high density neighborhoods of data points. Although the
density parameter is critical for the successful application of
DBSCAN, recently proposed heuristics appear to yield high
quality results. The computational complexity of DBSCAN
comes up to O(n log(n)) under the assumption that the data
are organized in a spatial index (R*-tree).

In evolutionary clustering, a solution to the clustering
problem is typically encoded as a chromosome. Next, by
employing evolutionary operators and a population of solu-
tions the algorithm probes the search space to find a globally
optimum partition of the data. The most commonly used
evolutionary operators are: selection, recombination, and
mutation. Each operator transforms one or more input chro-
mosomes into one or more output chromosomes. A fitness
function evaluated on a chromosome determines a chromo-
some’s likelihood of surviving into the next generation. In
early approaches [8, 18], chromosomes encoded the parti-
tion of n objects into K clusters and Genetic Algorithms
were employed to identify the best partition. However, the
sensitivity of GAs to the selection of the various parameters
like population size, and crossover and mutation probabil-
ities, as well as, the difficulties associated with the repre-
sentation scheme, presented a major problem. Better results
were obtained through hybrid approaches [4].

However, it is possible to represent the clustering pro-
cedure as an optimization problem of locating the opti-
mal centroids of clusters. Thus, all evolutionary techniques
can be employed since a clustering solution can be repre-
sented as a real-valued vector of the centroids. Previous ap-
proaches employed Evolutionary Strategies [S], Evolution-
ary Programming [15], and recently Particle Swarm Opti-

2388

2389

mization [31]. All these approaches demonstrated that it is
possible to obtain high quality partitions, but at a high com-
putational cost.

In this paper we attempt to tackle the high computa-
tional cost of traditional evolutionary techniques by intro-
ducing a new fitness criterion. This criterion is based on
a windowing technique already employed in other cluster-
ing algorithms [28, 32]. The proposed approach is indepen-
dent of the evolutionary technique employed. In this pa-
per we employ the Differential Evolution algorithm as re-
cent work [21] has demonstrated its superior performance
on such problems.

A critical and open issue in cluster analysis, is the deter-
mination of the number of clusters present in a dataset. The
evolutionary clustering techniques proposed so far, with the
exception of [17], require from the user to specify the num-
ber of clusters present in the data prior to the execution of
the algorithm. The proposed approach can provide an ap-
proximation to the number of clusters present in a dataset.

The rest of the paper is organized as follows. In Sec-
tion 2, we analyze the proposed fitness function. Next, in
Section 3 we describe the proposed evolutionary scheme
and in Section 4 we present experimental results that
demonstrate the applicability of the proposed approach. The
paper ends with concluding remarks and discussion in Sec-
tion 5.

2 Window Density Function

Let the data set comprise aset X = {z1,...,2}, where z;
is a data vector in the d dimensional Euclidean space R%. A
k clustering of X is a partition C of X into k disjoint groups
C;, fori =1,2,..., k. The clustering problem amounts to
the determination of a partition of X which is optimal with
respect to a function f that quantifies the goodness of the
partition.

Different statistical functions have been proposed for
S [19, 33]. But in all previous approaches at least a full scan
over the dataset is necessary to compute the function value
for a specific instance. Evolving a population using such a
fitness criterion can be expensive in terms of computational
cost, compared to k-means like approaches that typically do
not require more than 10 to 20 scans of the dataset.

In the present contribution we propose the Window Den-
sity Function (WDF) that overcomes the aforementioned
limitations:

Definition 1: Let a d-range of size a € R and center z € R¢
be the orthogonal range [21 —a, 21+a] X - - X [24—a, 24 +a].
Assume further, that the set S, ., with respect to the set X,
is defined as:

Se.={yeX:zi—a<y<z+a, Vi=1,...,d}

Then the Window Density Function WDF for the set X, with
respect to a given size a € R, is defined as:

Sa,z|- 6]

In other words, WDF represents the number of points
from the dataset X, that reside in a window of size a cen-

WDF,(z) =

2389

v
i
. q;.--?.‘} 2

Figure 1: Dataset DSet;

tered at z. WDF is a meaningful clustering objective func-
tion, since as the center of a d-range, z, moves to the center
of the cluster the number of points around it should increase.
As it is obvious the size a, is critical to the procedure as it
determines the location of the minima of the objective func-
tion. To illustrate this we employ the dataset Dset;, exhib-
ited in Fig. 1. This dataset contains 500 points organized in
5 clusters with 100 points each. Each cluster is constructed
by sampling 100 points from a two dimensional Gaussian
distribution. The mean of each distribution was randomly
scattered in the range [0, 200]2, and the covariance matrices
were randomly generated by obtaining for each element of
the matrix a random number between 1 and 2.

In Fig. 2, the 3d-plots of WDF are provided to visualize
the impact of the parameter a. As the value of a increases,
the extreme points of WDF tend to merge. When a = 1
there are five maxima, equal to the number of clusters. On
the other hand, when @ = 10, the three maxima correspond-
ing to the three closest clusters previously identified merge
to a single one.

The most important feature of the proposed density func-
tion is that it is not necessary to scan the entire dataset to
obtain a fitness value for a specific object. In particular,
the computation of WDF is the well studied Computational
Geometry Orthogonal Range Search Problem. Numerous
Computational Geometry techniques have been proposed to
address this problem. All these techniques employ a prepro-
cessing stage at which they construct a data structure stor-
ing the patterns. This data structure allows them to answer
range queries fast. In Table 1 the computational complexity
of various such approaches is summarized. In detail, for ap-
plications of very high dimensionality, data structures like
the Multidimensional Binary Tree [22], and Bentley and
Maurer [7] seem more suitable. On the other hand, for low
dimensional data with a large number of points the approach
of Alevizos [3] appears more attractive.

3 Evolutionary Clustering under the WDF
Objective Function

Evolutionary algorithms (EAs) have their roots in the
stochastic search methods scientific domain, and try to
mimic the natural biological evolution process. Ultilizing
the principle of survival of the fittest they try to evolve an

2390

Figure 2: 3D-Plot of WDF for Dset; and a = 1, 5, 10 from left to right

Preprocessing

Method Time Space Query time
Multidim. Binary Tree [22] 6 (dnlogn) 6 (dn) O (s+dn!~1/9)
Range Tree [22] 0] <n log?~! > (0] (n log?~! n) (0] (s + log® n)
Wilard and Lueeker [22] (0] (n log?~!) O (n logd_1 n @] <s I Iog® 2 n)

d—1 =
Chazelle [11] 0 (nlog'n) O(nkE2) O(s+log"'n)
Chazelle and Guibas [12] 0] (n log?+?) (@] (n log? n) (@] (s +log?2 n)
Alevizos [3] (0] (n log?~!) 0 (n log?~! n) (0] (S + log?2 n)
Bentley and Maurer [7] O (n*-1) O (n* 1) O (s + dlogn)
Bentley and Maurer [7] O{n'T¢) O (n'*9) O (s + logn)
Bentley and Maurer [7] O (nlogn) O (n) O (n®)

Table 1: Methods for orthogonal range search.

initial population of potential solutions to obtain a globally
optimal result. In this paper, from the broad field of EAs we
employ Differential Evolution [27]. Of course our approach
can be applied using any other EA.

DE evolves the population of potential solutions (in-
dividuals), using three operators, mutation, recombination
and selection. An individual, in the clustering context, is
expressed using a predetermined number of d—dimensional
vectors that represent the centers of the d-ranges, which in
turn constitute the clustering result. The fitness of each indi-
vidual is measured by the sum of the WDF function over all
the d-ranges, under a fixed value of the parameter a. The re-
maining procedure of the DE algorithm remains unchanged.

At the first step, all individuals are initialized using a
random number generator. At the mutation step, for each
i =1,2,..., P (P represents the size of the population) a
new mutant weight vector v; 41 is generated by combining
vectors, randomly chosen from the population, and exploit-
ing one of the mutation operators (2)—(6):

Vgr1 = wo'™ +p(wy —wi®), @
Vg1 = wy +p(wy? —wp®), 3)
Vi = wh+pWlt = W) + plwpt —wi?), @)
Vi1 wlest 4 p(wht — wi?) + pwy? — wpt), (5)
v_f]“ = wgl e u(w? - w;3) + u(w;4 - w;5), 6)

where w)', wg2, wg?’, wi* and w;s are randomly selected

vectors, different from wé, wge“ is the best member of the
current generation. Finally, the positive mutation constant
1 controls the magnification of the difference between two
weight vectors. For the rest of the paper, we refer to the
differential evolution algorithm that uses Eq. (2) as the mu-
tation operator with DE; , DE; for the algorithm that uses
Eq. (3), and so on.

Having constructed the mutant vectors, the recombina-
tion step is initiated that constructs a trial vector for each
individual. At the recombination step, for each compo-
nent j = 1,2, ..., L of the mutant vector a random number
r € [0,1] is generated. If r is smaller than the predefined
recombination constant p, the j-th component of the mutant
vector v; 41 becomes the j-th component of the trial vec-
tor. Otherwise, the j-th component of the target vector is
selected as the h—th component of the trial vector. Finally,
the resulting trial vector replaces the initial individual if it
yields a better WDF function value. Otherwise it is dis-
carded. This constitutes the selection step.

As it is obvious the evolutionary optimization procedure
described above aims at discovering the set of d-ranges
that include as many points from the dataset as possible.
Thus a single execution is able to determine a clustering
result. Note that in the final clustering solution empty d-
ranges may appear, or even d-ranges that overlap may ex-
ist. By employing the merge operation of the unsupervised

2390

2391

k-windows clustering algorithm [28], the number of clus-
ters can be approximated. During this step, for each pair of
overlapping windows, the number of patterns that lie in their
intersection is computed. With respect to the proportion of
this number to the total number of points contained in each
window, the algorithm can decide whether to either:

(a) Ignore one window if the proportion is very high.
(b) Consider the windows to contain parts of the same
cluster if the proportion is relatively high.
(c) Consider the windows to capture different clusters, if
the proportion is low.
An example of this operation is exhibited in Fig. 3.

(a) W (b) (c) - w5
S W2 o:o
(X EAd 00 ¢

°® e

.°.0’:._.!:. o-..
ee o o A
o...

W6

Figure 3: (a) W, and W5, satisfy the similarity condition and
Wi is deleted. (b) W3 and W, satisfy the merge operation
and are considered to belong to the same cluster. (c) Wj
and Wg have a small overlapment and capture two different
clusters.

A high level description of the proposed algorithmic
scheme follows:

DE Unsupervised Clustering (DEUC)
Construct a data structure for the storing of the data.
Set the parameter a of WDF function.
Repeat

Execute the DE algorithm.
Until a sufficient part of the dataset is covered

or a maximum number or iterations is performed.

Merge the resulting d-ranges
Report the final clusters.

4 Experimental Results

To demonstrate the applicability of the proposed approach
we firstly employ Dset;, exhibited in Fig. 1, which is two
dimensional and allows the visual inspection of the results.
Note that in all the experiments reported in this section the
population size was set to 20 individuals, and a maximum
of 200 epochs was allowed. The DE parameters ;2 and p
were set to 0.6, and 0.8, respectively, in all experiments.
Moreover, if the d-ranges of the best individual discov-
ered contain more than 90% of the total points the execu-
tion of DE terminates. The application of the DEUC algo-
rithm over the Dset; dataset with the parameter a obtain-
ing values 1,2,5,10 is exhibited in Fig. 4. These results
were obtained, by stopping the iterative executions of DE
when more than 90% of the dataset was covered. Each indi-
vidual encoded the center of five d-ranges. Comparing the
clustering result, with the 3D-plots of the WDF function in

2391

Figure 4: The clustering result of DEUC fora = 1, 3,5, 10

Fig. 2, it is obvious that DEUC is able to detect the extrema
of WDF and form a clustering result that is in accordance
with the form of WDE. The colors in the plots correspond to
the different cluster labels of the points that were assigned
to the closest d-range under the Euclidean metric. It is obvi-
ous that DEUC is able to provide visually optimal clustering
results when a ranges between 1 and 5. On the other hand,
when a is too large the adjacent clusters are merged to a
single cluster by the merging procedure.

Comparing the results of DEUC involves the usage
of a clustering algorithm that can approximate the num-
ber of clusters. To compare the results of DEUC with
other approaches we employ the DBSCAN clustering al-
gorithm [25]. This choice is motivated by the fact that DB-
SCAN computes the number of points (MinPts) that re-
side in a hypersphere of size E'ps. Thus, the E'ps parameter
of DBSCAN is strongly related to the a parameter of the
WDF function. The execution of DBSCAN on Dsetq, set-
ting MinPts = 5, (anything with less than 5 points in an
Eps neighborhood around it is considered noise), and for
Eps obtaining the values Eps = 1, 3,5, 10 is exhibited in
Fig. 5. Similarly in this case the colors designate different
cluster labels, and the red crosses represent points recog-
nized as noise. From the plots we can see that DBSCAN
is more sensitive to the value of Eps than DEUC is on the
value of a. Moreover, for DBSCAN to be able to recognize
the three different adjacent clusters a very careful selection
of Eps and MinPts is needed.

Next, in Fig. 6, we investigate the ability of DEUC to
approximate the number of clusters. To this end we apply
DEUC using 3, 5, 10 and 15 windows. As illustrated, when
the number of d-ranges is less than the true number of clus-
ters, each d-range is located over a minimum of WDEF, but
due to the inability to cover all the minima the cluster labels
are incorrect. On the other hand, as the number of d-ranges
becomes larger than the real number of clusters, the algo-
rithm has no problem of detecting the five clusters, since
the merging procedure assigns correctly the cluster labels.

The complexity of the DEUC algorithm can be analyzed
by the number of function evaluations it requires to provide
a clustering result. As already mentioned for each function
evaluation a range search operation over the dataset is per-

|

| ERd B 4

i

} 1

ol |l

| \ |
My | e ‘

Figure 5: =

1,3,5,10

[
B A

‘ | L5

| “W

L 2. ik

Figure 6: The impact on the clustering result of different
number of d-ranges (3,5,10 and 15) whena = 3

formed. Measuring the total number of range searches that
are needed is an indication of the relative speed of DEUC.
To this end, we constructed Dsets, in a manner similar to
Dsety, but with a size ranging from 5000 to 30000 points.
The mean number of range searches required over 100 ex-
ecutions of DEUC, for all mutation operators is depicted in
Fig. 7. From this figure it is clear that all the DE operators
require a steady number of range searches to converge, irre-
spective of the dataset size. When the dataset size is small
(5000) the number of ranges searches is relatively high. It
even exceeds the total number of points. DBSCAN for each
dataset requires at least n range searches to finalize, where
n is the number of points in the dataset. Thus, for small
datasets DEUC appears computationally expensive. On the
other hand, as the dataset size increases, the efficiency of
DEUC also increases. For example for 30000 points in the
dataset DE; requires less than 6000 range searches, that is
five times less than DBSCAN.

To demonstrate the quality of the partitioning results we
employ two real world datasets. The first is the four dimen-
sional Iris dataset Dset;,;s from the UCI Machine Learn-
ing Repository [9]. This dataset is among the best known
databases to be found in the pattern recognition literature. It
contains 150 records of four features. The features are mea-
surements of the sepal and petal length and width of three

2392

11000

DE1 —+
DE2
10000 | BES X
DE 5
°
[} =
g 000 p
£ W
S 8000 | . g
g)é . * R APDECH PR)(
£
g 7000 | ’ % «
12}
[}
2
& 6000_»]
TS A ey e
5000 | P j
4000 : - : :
5000 10000 15000 20000 25000 30000

Dataset size in number of points

Figure 7: Mean number of range searches required for vari-
able dataset size.

different types of the iris plant (Setosa, Versicolour and Vir-
ginica). The 150 records are equally distributed in three
classes, each corresponding to a different type of the plant.
To evaluate the clustering result we resolve to the correspon-
dence they have to the true cluster labels of the patterns.
Ideally, each cluster should contain patterns that belong to
only one type of the Iris plant. After normalizing the data
in the [10, 100]* range, DEUC was executed 100 times, us-
ing a population of 20 individuals while each individual en-
coded 5 d-ranges. In most cases 3 clusters were recognized
by the algorithm, but there were also cases that resulted in
4 and 5 clusters. Moreover, as a comparison measure we
executed DBSCAN using all the combinations of values in
[1,10] with a step of 1, for the Eps and MinPts param-
eters, yielding 100 different clustering results. In the box-
plots exhibited in Fig. 8, we summarize the results with re-
spect to the partitioning accuracy. Each box-plot depicts the
obtained values for the classification accuracy, in the 100
experiments. The box has lines at the lower quartile, me-
dian, and upper quartile values. The lines extending from
each end of the box (whiskers) exhibit the range covered by
the remaining data. The outliers, i.e. the values that lie be-
yond the ends of the whiskers, are represented with crosses.
Notches represent a robust estimate of the uncertainty about
the median. As it is obvious from Fig. 8, all the different
DE operators are able to capture the dynamics of the dataset
and result in high partitioning accuracy. Among all the op-
erators DE3 exhibits the most robust behavior and is able to
provide the best results even with respect to outliers. On the
other hand, DBSCAN is unable to provide highly accurate
results since in this dataset two of the classes are somewhat
close and DBSCAN tends to merge them to a single cluster,
thus destroying its classification accuracy.

The next dataset studied Dset, is the well-known and
publicly available acute leukemia dataset provided by the
center of genome research of the Whitehead Institute [16].
It is a well characterized dataset already used in numerous
studies. This dataset contains mRNA expression profiles
from 72 leukemia patients aiming at the development of an
expression—based classification method for acute leukemia.

2392

2393

100 T T T — =

s Do B L P S

85 | ' + L
80 |
75

70 - ;

|
R R N + S 2

65

DE1 DE2 DE3 DE4 DE5 DBSGAN
Figure 8: Box-plot of the classification accuracy for the Iris
dataset

Each sample is measured over 7129 genes. The samples
contain 47 acute myeloid leukemia (ALL) samples and 25
acute lymphoblastic leukemia (AML) samples. From the
7129 genes, the 50 most highly correlated genes with the
ALL-AML class distinction, were selected as in [16]. Sim-
ilarly, with the Iris dataset, all the values were normalized
in the [10,100]° range. Next 100 experiments of DEUC
were performed and the partitioning accuracy of the clus-
ters from each run with respect to the AML and ALL label
of the patterns was recorded. The DBSCAN algorithm was
also executed on the same dataset using all the combinations
of values in [40, 50] and [1, 10] with a step of 1, for the Eps
and MinPts parameters respectively, yielding 100 differ-
ent clustering results. The box-plots in Fig. 9, exhibit the
obtained results. In this case, the DEUC algorithm reported
4-6 final clusters, with the classification accuracy obtaining
values occassionaly exceeding 95%. In this case DE1 man-
aged to perform better among the different variants of DE.
The DBSCAN algorithm this time exhibited quite high clas-
sification results, similar to the DEUC algorithm. It should
be noted, however, that it was very difficult to establish a
good range for the Eps parameter due to the high dimen-
sionality of the dataset (50).

100

. : ;
95 ‘ T T E
| | N —
1 | | T 7 1 e
90 + \ | !”—‘L I { o < m— i
SO e S W
85 | (\ N |) X N
! | | -
’l o L ﬂrJ } |
80 - — _'7 [1
; % i
75| | | . i
| | « I
| | x
. i |
of ||
65 i . . - , .
DE1 DE2 DE3 DE4 DE5 DBSCAN

Figure 9: Box-plot of the classification accuracy for the
Acute Leukemia dataset Dsety,

2393

5 Concluding Remarks and Discussion

Many partitioning clustering algorithms based on evolution-
ary techniques have been proposed to tackle the problem of
finding the optimal partition of a data set. Most of these ap-
proaches firstly encode a solution to the clustering problem
as a chromosome, and then treat the clustering task as the
optimization problem of locating the optimal centroids of
clusters. The fitness of clustering solutions can be evaluated
using various statistical functions [19, 33].

In the present contribution we present a new fitness func-
tion, that apart from being a meaningful clustering objective
function, can be evaluated in sub-linear time with respect to
the size of the dataset. This is achieved by utilizing Compu-
tational Geometry data structures.

Moreover, we propose an evolutionary scheme based on
Differential Evolution that also has the ability to approxi-
mate the number of clusters and yields high quality parti-
tions as it is evident from the experimental results provided.
The proposed scheme can be applied using any evolutionary
algorithm. In this paper we chose Differential Evolution,
and aim to investigate the performance of different EAs in
a future work. Furthermore, we wish to present an adaptive
scheme, that will also be able to provide estimations for the
parameter a of the WDF function.

Bibliography

[1] P.K. Agarwal and C. M. Procopiuc. Exact and approx-
imation algorithms for clustering (extended abstract).
In 9th Symposium on Discrete Algorithms, pages 658—
667, 1998.

[2] M. S. Aldenderfer and R. K. Blashfield. Cluster Anal-
ysis, volume 44 of Quantitative Applications in the So-
cial Sciences. SAGE Publications, London, 1984.

[3] P. Alevizos. An algorithm for orthogonal range
search in d > 3 dimensions. In Proceedings of the
14th European Workshop on Computational Geome-
try. Barcelona, 1998.

[4] G. P. Babu and M. N. Murty. A near optimal initial
seed value selection in k-means algorithm using a ge-
netic algorithm. Pattern Recogn. Lett., 14(10):763-
769, 1993.

[5] G.P. Babu and M. N. Murty. Clustering with evolution
strategies. Pattern Recogn.,27:321-329, 1994.

[6] R. W. Becker and G. V. Lago. A global optimization
algorithm. In Proceedings of the 8th Allerton Con-

ference on Circuits and Systems Theory, pages 3-12,
1970.

[7]1 J. L. Bentley and H. A. Maurer. Efficient worst-case
data structures for range searching. Acta Informatica,
13:1551-68, 1980.

[8] J. N. Bhuyan, V. V. Raghavan, and K. E. Venkatesh.
Genetic algorithm for clustering with an ordered rep-

resentation. In Fourth International Conference on
Genetic Algorithms, page 408415, 1991.

[9] C.L. Blake and C.J. Merz. UCI repository of machine
learning databases, 1998.

[10] D. Boley. Principal direction divisive partitioning.
Data Mining and Knowledge Discovery, 2(4):325-
344, 1998.

[11] B. Chazelle. Filtering search: A new approach to
query-answering. SIAM J. Comput, 15(3):703-724,
1986.

[12] B. Chazelle and L. J. Guibas. Fractional cascading: Ii
applications. Algorithmica, 1:163-191, 1986.

[13] L. S. Dhillon and D. S. Modha. Concept decomposi-
tions for large sparse text data using clustering. Ma-
chine Learning, 42(1):143-175, Jan 2001.

[14] U. M. Fayyad, G. Piatetsky-Shapiro, and P. Smyth.
Advances in Knowledge Discovery and Data Mining.
MIT Press, 1996.

[15] D. B. Fogel and P. K. Simpson. Evolving fuzzy clus-
ters. In International Conference on Neural Networks,
pages 1829-1834, 1993.

[16] T.R. Golub, D.K Slomin, P. Tamayo, C. Huard,
M. Gaasenbeek, J. Mesirov, H. Coller, M.L. Loh,
J. Downing, M. Caligiuri, C. Bloomfield, and E. Lan-
der. Molecular classification of cancer: Class discov-
ery and class prediction by gene expression monitor-
ing. Science, 286:531-537, 1999.

[17] J. Handl and J. Knowles. Evolutionary multiobjective
clustering. In 8th International Conference on Paral-
lel Problem Solving from Nature (PPSN VIII) 8th In-
ternational Conference on Parallel Problem Solving
from Nature (PPSN VIII), pages 1081-1091, 2004.

[18] D. Jones and M. A. Beltramo. Solving partition-
ing problems with genetic algorithms. In Fourth In-

ternational Conference on Genetic Algorithms, page
442449, 1991.

[19] E H. C. Marriott. Optimisation methods of cluster
analysis. Biometrics, 69(2):417422,1982.

[20] N. Megiddo and K. J. Supowit. On the complexity of
some common geometric problems. SIAM Journal on
Computing, 13:182-196, 1984.

[21] S. Paterlini and T. Krink. Differential evolution and
particle swarm optimization in partitional clustering.
Computational Statistics and Data Analysis, 2005. To
appear.

[22] F. Preparata and M. Shamos. Computational Geome-
try. Springer Verlag, New York, Berlin, 1985.

2394

[23] V. Ramasubramanian and K. Paliwal. Fast k-
dimensional tree algorithms for nearest neighbor
search with application to vector quantization en-
coding. [EEE Transactions on Signal Processing,
40(3):518-531,1992.

[24] M. Rigou, S. Sirmakessis, and A. Tsakalidis. A com-
putational geometry approach to web personalization.
In IEEE International Conference on E-Commerce
Technology (CEC’04), pages 377-380, San Diego,
California, 2004.

[25] J. Sander, M. Ester, H.-P. Kriegel, and X. Xu. Density-
based clustering in spatial databases: The algorithm
gdbscan and its applications. Data Mining and Knowl-
edge Discovery, 2(2):169-194, 1998.

[26] M. Steinbach, G. Karypis, and V. Kumar. A compari-
son of document clustering techniques, 2000. In KDD
Workshop on Text Mining.

[27] R. Storn and K. Price. Differential evolution — a simple
and efficient adaptive scheme for global optimization
over continuous spaces. Journal of Global Optimiza-
tion, 11:341-359, 1997.

[28] D. K. Tasoulis and M. N. Vrahatis. Unsupervised clus-
tering on dynaic databases. Pattern Recognition Let-
ters, 2005. to appear.

[29] A. Torn and A. Zilinskas.
Springer-Verlag, Berlin, 1989.

Global Optimization.

[30] C. Tryon. Cluster Analysis. Ann Arbor, MI: Edward
Brothers, 1939.

[31] D. W. van der Merwe A. P. Engelbrecht. Data cluster-
ing using particle swarm optimization. In Congress on
Evolutionary Computation, pages 215-220, Canberra,
Australia, 2003.

[32] M. N. Vrahatis, B. Boutsinas, P. Alevizos, and
G. Pavlides. The new k-windows algorithm for im-
proving the k-means clustering algorithm. Journal of
Complexity, 18:375-391, 2002.

[33] M.-S. Yang and K.-L. Wu. A similarity-based ro-
bust clustering method. [EEE Transactions on Pat-
tern Analysis and Machine Intelligence, 26(4):434—
448, 2004.

2394

