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Abstract. One of the main reasons for the slow convergence and the suboptimal 
generalization results of MLP (Multilayer Perceptrons) based on gradient de-
scent training is the lack of a proper initialization of the weights to be adjusted. 
Even sophisticated learning procedures are not able to compensate for bad ini-
tial values of weights, while good initial guess leads to fast convergence and or 
better generalization capability even with simple gradient-based error minimi-
zation techniques. Although initial weight space in MLPs seems so critical there 
is no study so far of its properties with regards to which regions lead to solu-
tions or failures concerning generalization and convergence in real world prob-
lems. There exist only some preliminary studies for toy problems, like XOR. A 
data mining approach, based on Self Organizing Feature Maps (SOM), is in-
volved in this paper to demonstrate that a complete analysis of the MLP weight 
space is possible. This is the main novelty of this paper. The conclusions drawn 
from this novel application of SOM algorithm in MLP analysis extend signifi-
cantly previous preliminary results in the literature. MLP initialization proce-
dures are overviewed along with all conclusions so far drawn in the literature 
and an extensive experimental study on more representative tasks, using our 
data mining approach, reveals important initial weight space properties of 
MLPs, extending previous knowledge and literature results.   

1   Problem Statement and Previous Work 

BP training suffers from been very sensitive to initial conditions. In general terms, the 
choice of the initial weight vector w0 may speed convergence of the learning process 
towards a global or a local minimum if it happens to be located within the attraction 
basin of that minimum. Conversely, if w0 starts the search in a relatively flat region of 
the error surface it will slow down adaptation of the connection weights.  

Sensitivity of BP to initial weights, as well as to other learning parameters, was 
studied experimentally by Kolen and Pollack [1]. Using Monte Carlo simulations on 
feed forward networks trained with BP to learn the XOR function they discovered that 
convergence of these networks exhibits a complex fractal-like structure as a function 
of initial weights.  On the other hand, analytical studies for the same problem were 
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reported by Hamey [2] who reconsiders the XOR problem and provides a theoretical 
study of the error surface for the standard mean square error function. However, he 
notes the difficulty of having analytic solutions for the general pattern classification 
case as the study of the error surface is hampered by high dimensionality and because 
of the difficulty of theoretical analysis. In light of these results it seems that it is not 
possible, in general, to provide complete theoretical verification for a number of re-
search results claiming to cope effectively with the problem of weight initialization. 
This is, partially, due to the fact that an exhaustive study of the error surface and of 
the learning dynamics is almost unfeasible for the general case of the pattern classifi-
cation problem. On the other hand it is tempting to examine if the initial weight space 
possesses some kind of structure or if it is able to reveal features which may lead to an 
effective choice of initial weights. To this end, an effective means seems to be the 
analysis of the weight space of MLPs in different pattern classification problems. This 
also permits to gain significant evidence on the validity of different results having ei-
ther a theoretical basis or proven by experiments.  

In this paper we revisit the problem of weight initialization for neural networks 
trained with gradient descent based procedures. We verify, experimentally, a number 
of results reported by several researchers for the XOR-network and we extend these 
results to a well known problem, the IRIS classification problem. Our approach is 
based on clustering of the weight vectors after having trained an MLP with the BP 
procedure. Classification of the weight vectors into clusters is performed using  
unsupervised clustering of Kohonen’s self organizing feature maps, or simply self-
organizing maps (SOM). Results of our experiments not only reveal, as it was ex-
pected, the basins of attraction for the gradient descent learning algorithm, but also 
provide significant evidence that no inherent clustering exists for the initial weight 
space. Our approach consists in performing analysis of the weight space after having 
trained an MLP with the BP procedure for a significant number of weight vectors and 
for various different sets of training patterns. This approach has already been used by 
other researchers in the XOR problem, but what is new here is its application to a well 
known real life problem, the IRIS classification problem. Analysis of the weight 
space is done using a data clustering and visualization technique. We consider that 
this approach extends results obtained previously by other researchers. Main consid-
erations of these previous researches are presented hereafter.  

2   Analyzing the Weight Space for MLP Using Kohonen’s Self 
Organizing Feature Maps, as a Data Mining Tool for the 
Analysis 

Data clustering and visualization of the clusters, in this paper is based on Kohonen’s 
SOM. The SOM is a type of neural network which is based on unsupervised learning. 
Thus, unlike supervised learning methods, a SOM is able to perform clustering of data 
without any reference to the class membership of the input data.  

Training the map is an iterative process. At each step a sample vector x is ran-
domly chosen from the input data set and distances between x and all the codebook 
vectors are computed. Distances between codebook vectors and sample data corre-
spond to similarities between input data and units of the SOM. The best matching 



310 S. Adam, D.A. Karras, and M.N. Vrahatis 

unit (BMU), i.e. the most similar unit, is the map unit whose weight vector is clos-
est to x. The training algorithm updates the weight vector of the BMU and of those 
of its neighborhood so as to get these units move closer to the input vector x, i.e. 
diminish their distance to the sample vector [3,4,5]. More details on SOM can be 
found in [3]. 

The SOM algorithm performs a mapping from the high dimensional input space 
onto map units. This mapping preserves topology, in the sense that, relative distances 
between data points in the input space are preserved by distances between map units. 
This means that data points lying near each other in the input space will be mapped 
onto neighboring map units. The SOM can thus serve as a clustering tool of high di-
mensional data. Compared to standard techniques (k-means, ISODATA, competitive 
learning etc) SOM not only performs better in terms of effectively clustering input 
data to unknown clusters but also it is computationally more effective [3], [4]. Other 
comparisons and studies on the data mining capabilities of SOM can be found in the 
literature. We should mention here the use of the SOM Toolbox for SOM training, 
data visualization, validation and interpretation. SOM Toolbox was developed at Hel-
sinki University of Technology [5].  

We considered two classical benchmarks, the XOR function and the Iris classi-
fication problem. The XOR function was studied with a 2-2-1 network while the 
IRIS classification problem was investigated with two different network architec-
tures, one with 4-10-3 units and another one with 4-5-3 units. For all units the lo-
gistic sigmoid was used as an activation function. Experiments for both problems 
and for different network architectures were carried out according to the following 
steps:  
1. MLPs were trained with the on line BP learning algorithm. All experiments were 

carried out with the same training parameters, that is interval for initial weights    
[-2.0, 2.0], learning rate 0.9, max number of epochs 30000 and error between tar-
get and actual network output less than 0.01. 

2. A relatively large number of weight vectors, that is 5000, were chosen from the 
initial weight space. Weight vectors were randomly sampled in the interval [-2.0, 
+2.0] using uniform distribution. After training, the set of weight vectors was 
roughly divided into two distinct subsets, or categories, of weight vectors. One 
subset was made up from, those weight vectors for which both, training suc-
ceeded (the error goal was reached), and generalization performance was good, 
i.e. less than 20% of previously unseen patterns rejected per class. These vectors 
are called the successful weight vectors while those not meeting the above crite-
ria are called the failed weight vectors and they fall within the second category. 

3. For each weight vector 0
iw considered before training, the MLP was trained with 

the on-line gradient descent and a weight vector *
iw  after training was obtained. 

Thus, gradient descent is considered mapping the weight space before training W 
onto the weight space after training W’. Given the high dimensionality of these 
spaces we then used SOMs and projected each one of them on the 2-dimensional 
space. This approach is graphically depicted in Figure 1.  
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Fig. 1. How SOM could be used as a data mining tool for clustering weight space 

4. The 2-dimensional projections of W and W’ thus obtained presented the clusters 
of weight vectors being discovered by the SOM. Visual inspection of the map 
representing W’ permitted to draw some interesting qualitative information re-
garding the basins of attraction for the gradient descent procedure. Activation of 
the SOM units and visualization of the unified distance matrix (UM) to identify 
classification of weight vectors into different clusters. Details on these results are 
presented in the following section. 

5. We, finally, used the possibility offered by the SOM Toolbox to identify the 
weight vectors for which a unit of the SOM is activated to verify density of W re-
garding convergence and generalization. Actually, given a SOM node in a cluster 

of successful weight vectors we identified one weight vector before training 0
iw  

that gave after training a successful weight vector *
iw . By injecting additive 

noise, with normal distribution 2(0, )N σ , on 0
iw , we took a number of weight 

vectors in the vicinity of 0
iw . Retraining the MLP with the same BP procedure 

and mapping the weight vectors after training on the SOM we discovered that 
even for very small variance many of the noisy weight vectors did not behave the 

same way as 0
iw . 

3   Main Results and Discussion  

The tool for presenting results and analyzing them is the unified distance matrix 
(UM). UM represents the organization of the SOM units into groups, as uniform areas 
on the 2-dimensional grid.  
Result 1. Clustering of the weight vectors after training, which is performed by the 

SOM without any class membership information, depicts uniform regions 
of unit activity corresponding to clusters of successful weight vectors and 
thin borderline areas for the failed weight vectors. Figures 2, a and b, 
visualize clustering of the weights for the 4-10-3 IRIS classification net-
work, while Figures 2, c and d are representative for the 4-5-3 network. 

The clusters formed by the SOM correspond to the various minima reached by the 
gradient descent throughout each experiment. These minima can be global or local. In 
this sense and together with the topology preservation mapping of the SOM it is 
straightforward to assume that clusters indicate basins of attraction for the dynamics 
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of the learning procedure. This explains why the number of successful weight regions 
for the 4-5-3 IRIS network is less than the respective number for the 4-10-3 IRIS net-
work. This constitutes an experimental confirmation that as the number of unit in the 
hidden layer increases the number of basins of attraction increases and therefore the 
study of the weight space becomes more difficult; see Kolen and Pollack [1].  
Result 2. Execution of step 5, described above, for a number of different values of  

2σ  demonstrated that even for very small variance many of the noisy 

weight vectors did not behave the same way as the initial vector 0
iw , i.e. 

they did not result in successful training. Experiments showed that it is 
not possible to safely conclude on a minimum “size” for a neighbor of a 
successful weight vector in which gradient descent results in successful 
weight vectors. 

Though important the above results are of practical importance in terms of weight 
initialization. In order to acquire a better idea on how to deal with this matter we pro-
ceeded in a number of experiments using the 4-10-3 MLP for the IRIS problem. Dur-
ing these experiments we used values for the synaptic weight randomly chosen from 

intervals ,α α⎡ ⎤⎣ ⎦− + , with α varying from -6.0 up to +6.0, by a step of 0.20. Results 

of these experiments are stated hereafter. 
Result 3. Training seems to be very sensitive to the choice of the training patterns. 

For the same interval of initial weight vectors and even the same weight 
vectors, learning curves and subsequent generalization of BP are clearly 
different.  

However, during these trails we did not adopt some specific strategy on how to 
choose the training patterns and so it remains unclear what characteristic of the input 
space really biases the learning phase. A possible explanation relies on the inherent 
structure of the IRIS problem, where two classes are highly correlated. Finally, it 
seems that a good “strategy” to overcome this problem is to carry out training chang-
ing the set of training patterns every 50 or 100 initial weight vectors, these numbers 
chosen arbitrarily.   
Result 4. Training tends to be more successful when the weight vectors are chosen 

in an interval ],[ aa−  with 2
pα σ≈ , where 2

pσ  is the maximum 

variance of the variables of the input pattern space.  
While this result is in the same line with some previous research outcomes, it 

seems that it more accurately reflects a good strategy for weight initialization than 
previous similar results in the literature. This paper shows that it is not possible to be 
more specific in the weight initialization range than the above result. More experi-
ments, however, are needed to establish such an outcome. 
Result 5. While training seems to be more successful for values of the initial 

weights within some interval ],[ aa−  as described above, it is very 

likely for he BP to give a successful; learning curve for even greater val-
ues in intervals ]/,[],/[ kakakakakaka +∪−− , where k a natural 

number. 
Finally, figures 3,4 below demonstrate the validity of our results 4, 5 above by il-

lustrating how generalization performance is affected by the initialization range when 
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this increases. In the six samples below we see that up to a variance point as indicated 
by the results 4,5 of the initialization range, there are possibilities for obtaining better 
generalization than in all other cases. Incrementing this range we find points in the 
weight space where no solution can be granted, but afterwards, again, there are solu-
tions but with less generalization capability than within the smaller range. This vali-
dates the view that even in larger ranges solutions exist, not so successful perhaps, but 
with less possibility than within the smaller initialization ranges.  
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Fig. 2a). Mapping of weight vectors for the 
Iris network. Mapping of the successful 
weight vectors for the 10 hidden units Iris 
network. 

Fig. 2b). Mapping of weight vectors for the 
Iris network. Mapping of the failed weight 
vectors for the 10 hidden units the Iris net-
work. 
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Fig. 2c). Mapping of weight vectors for the 
Iris network. Mapping of the successful 
weight vectors for the 5 hidden units Iris 
network. 

Fig. 2d). Mapping of weight vectors for the 
Iris network.Mapping of the failed weight 
vectors for the 5 hidden units Iris network. 
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Fig. 3a). How MLP Generalization is affected 
by initial weights distribution for the Iris net-
work. Misclassification results are shown for 
selection of the initial weights from the inter-
vals [-0.2  0.0] U [0.0  0.2](upper slide)  and 
[-1   -0.8] U [0.8   1] (lower slide). 

Fig. 3b). How MLP Generalization is af-
fected by initial weights distribution for the 
Iris network. Misclassification results are 
shown for selection of the initial weights 
from the intervals [-0.8 0.6] U [0.6   
0.8](upper slide) and  [-1.6    -1.4] U [1.4   
1.6] (lower slide). 

4   Conclusions and Future Trends 

This paper revisits MLP initialization problem in the case of BP training and extends 
literature results both in the description of the weight space as well as in the  
estimation of a good strategy for selecting weight initialization range. The analysis is 
performed on a complex classification task, like Iris problem, which is more represen-
tative of “real” world problems characteristics than benchmarks used so far in the lit-
erature. To this end, a data mining approach, based on Self Organizing Feature Maps 
(SOM), is involved in this paper. The conclusions drawn from this novel application 
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of SOM algorithm in MLP analysis extend significantly previous preliminary results 
in the literature. More detailed analysis on real world benchmarks is needed to estab-
lish better these results and more elaborate specification of the weight initialization 
range than the ones of results 4, 5 in this study are needed not, however, too “accu-
rate” as in previous studies. Previous studies have been misleading in this aspect not 
showing that the weight initialization space is not dense in solutions but it follows an 
almost fractal structure and, therefore, a probabilistic approach is more suitable in or-
der to find out a good strategy for MLP weight initialization. 
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Fig. 4a). How MLP Generalization is af-
fected by initial weights distribution for the 
Iris network.  Misclassification results are 
shown for selection of the initial weights 
from the intervals  [-1.8   -1.6] U [1.6     1.8]. 

Fig. 4b). How MLP Generalization is af-
fected by initial weights distribution for the 
Iris network. Misclassification results are 
shown for selection of the initial weights 
from the intervals [-2.4   -2.2] U  [2.2   2.4].  
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