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Abstract. Designing a feed-forward neural network with optimal topol-
ogy in terms of complexity (hidden layer nodes and connections between
nodes) and training performance has been a matter of considerable con-
cern since the very beginning of neural networks research. Typically, this
issue is dealt with by pruning a fully interconnected network with “many”
nodes in the hidden layers, eliminating “superfluous” connections and
nodes. However the problem has not been solved yet and it seems to be
even more relevant today in the context of deep learning networks. In this
paper we present a method of direct zero-norm minimization for pruning
while training a Multi Layer Perceptron. The method employs a cooper-
ative scheme using two swarms of particles and its purpose is to minimize
an aggregate function corresponding to the total risk functional. Our dis-
cussion highlights relevant computational and methodological issues of
the approach that are not apparent and well defined in the literature.

Keywords: Neural networks, pruning, training, zero-norm minimiza-
tion, Particle Swarm Optimization

1 Introduction

Despite the popularity of neural network models in engineering applications de-
signing a neural network for a particular application remains a challenge. For
example, in system identification using neural networks, finding the optimal
network architecture is not straightforward [1]. In addition designing a neural
network for a control system is critical for optimal performance [2]. Besides the
type of the nodes’ activation functions and network training parameters this
design also involves selecting the right number of hidden layer nodes and their
interconnection. Thus, practitioners and researchers invested in pruning tech-
niques for defining the best available neural network architecture [1], [2].

The question on the number of hidden layers and more specifically on the
number of nodes per hidden layer necessary to approximate any given function
f : Rn → R

m, has been tackled by several researchers, as noted in [3], and has
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been studied as part of the problem of the density of Multi Layer Perceptrons
(MLPs). Furthermore, work introduced in [4], [5], [6] and [7] highlighted im-
portant theoretical aspects of the density problem and derived bounds on the
number of nodes of the hidden layer for one hidden layer MLPs. However, as
noted in [6], “in applications, functions of hundreds of variables are approxi-
mated sufficiently well by neural networks with only moderately many hidden
units”. No precise rules exist regarding the necessary and sufficient architecture
of the neural network to deal with some specific problem. It is common when
designing a network to apply a pruning technique. This consists in designing
a “fat” network with many nodes in the hidden layer and fully interconnected
layers. Then proceeding with detecting those connections and/or nodes that are
superfluous, with respect to the mapping function of the network, and removing
them. A number of pruning techniques and related research are reported in [8].

The approach proposed in this paper is a network pruning technique. Section
2 is devoted to the problem background and a brief literature review. In section
3 the problem of zero-norm minimization is formulated. Section 4 discusses how
cooperative swarms are used in this minimization problem and section 5 presents
application experiments. The paper ends with some concluding remarks.

2 Background and Previous Work

The whole problem is defined as the complexity-regularization problem and falls
within Tikhonov’s regularization theory, [9]. From that point of view, defining
the architecture of a network and training it in order to maximize generalization
performance in the context of supervised learning, is equivalent to minimizing
the total risk given by the following expression, as noted in [10],

R(w) = ES(w) + λEC(w) , (1)

where ES(w) is the standard performance measure, typically the error function
of the network’s output, EC(w) is a penalty term, a functional that depends
exclusively on the network architecture, that is the network’s complexity, and λ
is a real number whose value determines the importance attached to the com-
plexity penalty term when minimizing the total risk.

The so called penalty term methods are derived from the formulation of (1).
These methods tend to minimize the total risk functional by defining weight de-
cay or weight elimination procedures which are applied during network training
with back-propagation and hunt out “non-significant” weights by trying to drive
their values down to zero. This means that the corresponding connections are
eliminated and in consequence nodes with no connections at all are also elimi-
nated. Typical methods in this category are proposed in [11] and [12].

Another group of methods tend to eliminate connections and/or nodes by cal-
culating various sensitivity measures such as the sensitivity of the standard error
function to the removal of units (Skeletonization, [13]), the removal of connec-
tions [14] and LeCun’s Optimal Brain Damage, [15]. In general, such methods act
on the network architecture and modify it once the network is trained. Among
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several other methods that have been proposed it is worth mentioning those that
are hessian-based, [16], or variance-based pruning techniques, see [8].

A number of methods have also been defined based on Evolutionary Compu-
tation. Hancock in [17] analyzes the aspects of pruning neural networks using
the Genetic Algorithm (GA). Methods reported in the literature use the GA
for network architecture optimization as well as for weight training. However,
as noted in [18], GA may not yield a good approach to optimizing neural net-
work weights because of the Competing Convention Problem, also called the
Permutations Problem. Some research efforts propose hybrid approaches where
the network training task is carried out by backpropagation.

In particular, it is worth mentioning here that some recent pruning techniques
adopt the Particle Swarm Optimization (PSO) paradigm. One approach is pro-
posed in [19] and uses a modified version of PSO in order to determine the
network architecture (nodes and connections) as well as the activation function
of the nodes and the best weight values for the synapses. Results of the experi-
ments presented give relatively complex networks having intra-layer connections,
direct input-to-output connections and nodes of the same layer with different ac-
tivation functions. The subsequent question deals with how easily these networks
can be implemented for real life applications. Another approach is presented in
[20] and uses a so-called cooperative binary-real PSO to tune the structure and
the parameters of a neural network. Researchers’ main assumption is that the
signal flow via the connections of the nodes is controlled by ON/OFF switches.
This engineering consideration is implemented using a binary swarm together
with a real valued swarm which is used to train the network. Despite the re-
sults reported, our opinion is that, there are two points that remain unclear in
this paper. The first deals with the exact mode of interaction between the two
swarms. The second concerns the problem of state space exploration with parti-
cles traveling around in different subspaces of the state space. The latter will be
discussed and clarified later in section 4. Lastly, some hybrid approaches can be
found in the literature using both PSO and classical backpropagation for weight
training.

The approach presented in this paper is a penalty term method for neural
network regularization. The penalty term is based on the zero-norm of the vec-
tor formed by the weights of the network. In contrast to [20] our approach has
a clearly defined model of interaction between the two swarms and an effective
mechanism for state space exploration. Lastly, our work is underpinned by a
mathematical theory for dealing with the neural network pruning problem.

3 Minimizing the Zero-Norm of Weights

Let w̄ denote the vector formed by the weights of the network connections ar-
ranged in some order. Then the zero-norm of this vector is the number of non-zero
components, also defined by the expression, ‖w̄‖0 = card {wj , wj �= 0}. Given
that, pruning a network is eliminating connections, or in other words zeroing
corresponding weights, then pruning a network can be considered as minimizing
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the zero-norm of the weight vector of the network. Use of the zero-norm has
been proposed, in the machine learning literature, as a measure of the presence
of some features or free parameters in learning problems when sparse learning
machines are considered. The reason for using zero-norm minimization in ma-
chine learning is that, seemingly, it provides a natural way of directly addressing
two objectives, feature selection and pattern classification, in just a single opti-
mization, [21]. In fact, these two objectives are directly interconnected, especially
regarding regularization which enforces sparsity of the weight vector. One may
easily notice that pruning a network can, also, be considered as a feature selec-
tion problem, and, thus, the above considerations, again, justify its rephrasing
as a zero-norm minimization problem.

Although zero-norm minimization has been used by many researchers in var-
ious machine learning contexts; [22], it is important to point out an important
theoretical issue in the context of neural networks that is computational com-
plexity when minimizing the zero-norm of some vector. Amaldi and Kann in [23],
proved that minimizing the zero norm of some vector, let ‖w̄‖0, subject to the
linear problem yi (wxi + b) ≥ 1 is a problem that is NP-complete. In practice
researchers address zero-norm minimization using some approximate form such
as,

∑

i

(
1− e−α|wi|), where α is a parameter to be chosen, or

∑

i

log10 (ε+ |wi|),
where 0 < ε � 1.

Driving weights to zero or deleting weight in order to eliminate connections
between nodes has been fundamental in a number of network regularization
approaches. Such pruning techniques are weight decay procedures which are ap-
plied combined with gradient descent-based training methods. These weight de-
cay procedures use a differentiable form which is based on some norm of the
weight vector. Typical examples are the methods proposed by Hinton, [11],
and Moody and Rögnvaldsson, [24]. It is worth noting here that Rumelhart,
as reported in [25], investigated a number of different penalty terms using ap-
proximate forms of some weight vector norms. In particular, the penalty term∑

i

[(
w2

i /w
2
0

)
/
(
1 + w2

i /w
2
0

)]
proposed by Weigend et al. [12], constitutes an ap-

proximate form of the zero-norm of the weight vector.
Our approach to network pruning adopts direct minimization of the zero-

norm of the weight vector. Hence, the values of selected weights are zeroed
without decay (directly) and thus corresponding node connections are cutoff
abruptly. Such a consideration gives rise to the connectivity pattern of a net-
work, i.e. a binary vector where each component denotes whether a connection
is present, with 1, or 0 if it is deleted. This vector can be considered as the
connectivity adjoint of the weight vector. Thus, using an indicator function the
weight vector w̄ = (w1, w2, ..., wn), is replaced by the binary vector defined as

�w̄ =(�w1 ,�w2 , ...,�wn) , where �wi
=

{
1 wi �= 0
0 wi = 0

, 1 ≤ i ≤ n. In consequence,

the penalty term of Equation (1) becomes EC(w) = λ ‖w‖0 or using the connec-

tivity vector representation EC(w) = λ
n∑

i=1

�wi
. Finally, if the mean squared error
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of the network output is used as the standard measure of the network perfor-
mance the aggregate function (1) takes the form,

R(w) =
1

p

1

n

p∑

k=1

n∑

i=1

(
dki − oki

)2
+ λ

n∑

i=1

�wi . (2)

This form of the penalty term is not differentiable. So its minimization cannot
be based on classical back-propagation and an evolutionary approach should be
adopted. Minimizing an aggregate function of the form (2) has been addressed as
a multi-objective optimization problem and several methods have been proposed
in the context of evolutionary computation. Our approach is based on PSO and
specifically on a cooperative scheme that uses two swarms. This scheme is relative
to the approaches developed in [26] and [27].

4 Implementation of Cooperative Swarms

The cooperative scheme adopted for the minimization of this aggregate function
makes use of two swarms; let them be TrnSrm (Training Swarm) and PrnSrm
(Pruning Swarm). TrnSrm undertakes the minimization of the term correspond-
ing to the standard error of the neural network output and so it performs network
training. On the other hand, PrnSrm aims at minimizing the zero-norm of the
network’s connectivity vector, thus implementing the pruning function. It is ob-
vious that these two terms of the risk functional and therefore the two swarms
are very strongly coupled. During optimization we expect PrnSrm to derive the
thinnest possible network architecture that performs well in terms of training
and generalization that is permitting TrnSrm to reach some “good” local mini-
mum for the network error function.

MLPs considered here have only one hidden layer and are fully interconnected
without lateral or backward connections between the nodes. The assumption re-
garding the number of layers is not restrictive for the proposed method as none
of the statements, herein, depends on this specific hypothesis. Let N be the num-
ber of weights of such a neural network. Each particle in TrnSrm corresponds
to a network that constitutes a possible solution to the standard error term of
Equation (2). Such a particle is a vector in R

N whose values correspond to the
network weights. Particles in PrnSrm are binary. Each particle describes a pos-
sible network configuration represented by a binary vector in {0, 1}N−B

, where
B is the number of bias connections. Hence, only connections between nodes are
used to form the binary particles. There is a one-to-one correspondence between
particles in TrnSrm and particles in PrnSrm. Thus, any change in a particle
in PrnSrm implies a change in the architecture of the corresponding particle
in TrnSrm. The fitness function for TrnSrm is either the mean squared or the
mean absolute error of the network output, while the fitness function for PrnSrm

is
N−B∑

i=1

�wi
.

A methodological issue when defining and minimizing the aggregate form (1)
is the choice of λ. If the form R(w) = λ1ES(w) + λ2EC(w), where λ1 + λ2 = 1 is
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used instead of (1) then the relation between λ1 and λ2 determines the priority
given by the minimization process to each of the two terms. In this context,
promoting some network architecture, detected by PrnSrm, depends on the esti-
mation that this architecture is likely to lead or even be an optimal solution for
the minimization problem. The measure of this estimation is λ2. In our approach
defining λ1 and λ2 relies on the following considerations.

The overall minimization task is carried out by two populations which, though
tightly coupled, operate separately. However, when the pruning swarm is left to
operate alone, observation shows that about 80% of the components of a binary
vector are zeroed in about 10% of the total number of iterations, Fig. 1. Dur-
ing this number of iterations for a simple problem such as the Iris classification
benchmark, using a 4-5-3 network, the training swarm operating alone achieves
to reduce the network output error by about 40% of the initial value, Fig. 1.
This rough observation underlines the consideration that, for every network ar-
chitecture offered by PrnSrm as a solution, TrnSrm should be given the time
(number of iterations) to verify that the proposed architecture can be trained
to minimize the standard error function. Furthermore some estimation should
be made about the reliability of this result. This suggests setting λ1 = 0.7 and
λ2 = 0.3.

Effective implementation of the proposed approach is equivalent to having
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Fig. 1. Indicative minimization rate for the two swarms

a computing scheme consisting of two separate processes operating in parallel
that need to be synchronized in order to achieve the optimal solution in terms
of network complexity and performance. At any time the aggregate function re-
flects the problem’s best state. The training swarm operates in order to reduce
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the output error of the best network architecture to some significant level. For
our experiments this level is set to 70% of the output error computed for the
best network architecture selected every time the training swarm is launched. If
this goal is reached then the pruning swarm is activated to further reduce the
number of connections of the network architecture contributing the aggregate
function. Once such a new architecture is found the training swarm is launched
again.

Another important issue for the exploration process concerns the order in
which connections are eliminated. For instance suppose that there are K parti-
cles in each swarm. Following an iteration of PrnSrm these K particles suggest
k possible network architectures, where k ≤ K. Considering that, when a con-
nection is eliminated the corresponding dimension in the N -dimensional weight
space is not explored by the optimization process, it is easy to realize that a
random cutoff of network connections disperses the particles around in differ-
ent subspaces of the N -dimensional weight space. Thus the exploration process
weakens in the sense that a global best may become non-significant for particles
exploring different subspaces. The obvious consequence is that the optimization
process may fail to converge. The solution we adopted for this problem is to
apply connection cutoff in some ordered way by progressively eliminating input
connections and output connections of successive nodes of the hidden layer. This
is a kind of “normalized connection elimination” which ensures that at any time
there exists a subspace of the weight space that is common to and explored by
all particles in the swarm.

5 Experimental Evaluation

In order to validate the proposed approach we carried out a number of exper-
iments on four well known real world problems, the Fisher Iris classification
benchmark, the Servo prediction, the Solar sunspot prediction problem and the
Wine classification problem. All data sets are from the UCI repository of ma-
chine learning database. Note that two alternative approaches were used for
the Solar sunspot prediction problem. The first (Solar1) is the most typical one
found in the literature, while the second (Solar2) is used for comparison with the
approach presented in [20]. Table 1, summarizes typical network architectures
found in the literature and structures used for the experiments.

The experimental setup for the proposed approach comprises two swarms as
described above, each one consisting of 50 particles. The classic algorithm, [27],
without enhancements is used for updating the velocities of the particles. The
max number of iterations for the swarms is set to 1000 and values for the cogni-
tive and the social attraction parameters are set to 0.5 and 1.25 respectively. For
each network used, a set of 100 instances were derived and pruning experiments
were executed using the proposed approach and two classical pruning methods,
the Optimal Brain Damage (OBD) [15] and the Optimal Brain Surgeon (OBS),
[16], as implemented in NNSYSID20, [1].
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Table 1. Number of nodes and connections for networks used in experiments

Typical network architectures Network architectures used

Nodes Connections Nodes Connections

Iris 4-2-3 14 (+5 bias)
4-20-3 140 (+23 bias)

4-10-3 70 (+13 bias)

Servo 12-3-1 39 (+4 bias) 12-8-1 104 (+9 bias)

Solar1 12-5-1 65 (+6 bias) 12-15-1 195 (+16 bias)

Wine 13-6-3 96 (+9 bias) 13-15-3 240 (+18 bias)

Solar2 3-3-1 12 (+4 bias)
3-8-1 32 (+9 bias)

3-15-1 60 (+16 bias)

Table 2, hereafter, summarizes the results obtained for the following parame-
ters: Nodes pruned (Npr) in hidden layer, Connections pruned (Cpr) and Gen-
eralization achieved (Gen). Values reported for generalization for the prediction
problems are mean value and standard deviation. Generalization performance is
the mean value of the percentage of correctly classified test patterns for the Iris
and the Wine problems. For the Servo and the Solar sunspot prediction prob-
lems generalization is the mean absolute error between the network output and
the expected output of the test patterns.

Table 2. Results of the experiments

Proposed Method OBS OBD

Npr Cpr Gen Npr Cpr Gen Npr Cpr Gen

Iris
12 86 95.56% 0.6 0 34% 0 0 34%

6 45 97.78% 2 41 86.67% 6 40 68.89%

Servo 5 65
0.0515

1 42
0.0721

1 43
0.0716

0.0091 0.0309 0.0329

Solar1 9 114
0.0905

0 1
0.9094

0 1
0.9094

0.0092 0.2468 0.2468

Wine 9 139 97.78% 0 0 34% 0 0 34%

Solar2

6 23
0.0770

13 3
0.0693

2 10
0.2190

0.0050 0.0085 0.3000

10 39
0.0765

8 28
0.0693

24 11
0.2190

0.0058 0.0164 0.3925

It is worth noting that due to the way connections are eliminated the pro-
posed method does not provide sparse networks in terms of having few con-
nections between dispersed nodes in the hidden layer. One may notice that the
two classic methods OBS and OBD fail when faced with really “fat” networks,
while our approach achieves to eliminate “fat” from the network even in difficult
situations. When compared against the relative method presented in [20] (exper-
iments under the Solar2 label) the proposed method demonstrates clearly better
performance in terms of pruning, while generalization cannot be compared as
the authors in [20] do not provide enough data. Finally we need to note that de-
spite the small number of iterations (1000) for the swarms the method converged



Direct Zero-Norm Minimization for Neural Network Pruning and Training 303

in more that 80% of the cases. This score overrides the defect reported in the
literature that classic weight decay methods fail to converge, [25], and so they
are not used in practice.

6 Concluding Remarks

The proposed methods introduces zero-norm minimization for pruning the
weights of an MLP. Besides the definition of a solid mathematical basis the
method clarifies two important implementation points which are not clear with
other methods [19], [20] and greatly affect convergence of the minimization pro-
cess. Experiments carried out and results obtained, in Table 2 above, clearly
reveal the ability of the proposed method to eliminate connections and nodes
while training the network. Networks obtained after pruning are considered op-
timal in the sense that the number of nodes and connections are very close to the
values typically found in the literature for the benchmarks under consideration.
When compared against two classic pruning methods the proposed approach
performs better both in terms of pruning and training, and thus it breaks the
non-convergence deficiency associated with typical weight decay methods. How-
ever, in terms of training the approach can be further improved considering that
the ability of classic PSO algorithm is relatively poor regarding local search. In
this paper we did not elaborate this issue which will be further investigated in
future work.
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