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Abstract. Clustering can be defined as the process of partitioning a
set of patterns into disjoint and homogeneous meaningful groups, called
clusters. The growing need for parallel clustering algorithms is attributed
to the huge size of databases that is common nowadays. This paper
presents a parallel version of a recently proposed algorithm that has the
ability to scale very well in parallel environments mainly regarding space
requirements but also gaining a time speedup.

1 Introduction

Clustering, that is the partitioning a set of patterns into disjoint and homoge-
neous meaningful groups (clusters), is a fundamental process in the practice of
science. In particular, clustering is fundamental in knowledge acquisition. It is
applied in various fields including data mining [6], statistical data analysis [1],
compression and vector quantization [15]. Clustering is, also, extensively applied
in social sciences.

The task of extracting knowledge from large databases, in the form of clus-
tering rules, has attracted considerable attention. Due to the ever increasing size
of databases there is also an increasing interest in the development of parallel
implementations of data clustering algorithms. Parallel approaches to clustering
can be found in [9,10,12,14,16].

Exploiting recent software advances [7,11], collections of heterogeneous com-
puters can be used as a coherent and flexible concurrent computational resource.
These technologies have allowed the vast number of individual Personal Com-
puters available in most scientific laboratories to be used as parallel machines
at no, or at a very low cost. Network interfaces, linking individual computers,
are necessary to produce such pools of computational power. In many such cases
the network infrastructure comprises a bottleneck to the entire system. Thus
applications that exploit specific strengths of individual machines on a network,
while minimizing the required data transfer rate are best suited for network–
based environments.

The results reported in the present paper indicate that the recently proposed
k-windows algorithm [17] has the ability to scale very well in such environments.
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The k-windows algorithm endogenously determines the number of clusters.
This is a fundamental issue in cluster analysis, independent of the particular
technique applied.

The paper is organized as follows; Section 2 describes briefly the workings
of the k-windows algorithm; Section 3 discusses the parallel implementation of
the algorithm; while Section 4, reports the results of the experiments conducted.
The paper closes with concluding remarks and a short discussion about further
research directions.

2 The Unsupervised k-Windows Algorithm

The unsupervised k-windows algorithm is a straightforward generalization of the
original algorithm [17], by considering a large number of initial windows. The
main idea behind k-windows is to use windows to determine clusters. A window
is defined as an orthogonal range in d-dimensional Euclidean space, where d is
the number of numerical attributes. Therefore each window is a d-range of initial
fixed area a.

Intuitively, the algorithm tries to place a window containing all patterns that
belong to a single cluster; for all clusters present in the dataset. At a first stage,
the windows are moved in the Euclidean space without altering their area. Each
window is moved by setting its center to the mean of the patterns it currently
includes (sea solid line squares in Fig. 1. This process continues iteratively until
further movement does not increase the number of patterns included. At the
second stage, the area of each window is enlarged in order to capture as many
patterns of the corresponding cluster as possible. The process of enlargement of
a window terminates when the number of patterns included no longer increases.
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Fig. 1. Sequential Movements (M1 M2 M3 solid lines ) and sequential enlargements
(E1 E2 dashed lines) of a window.

In more detail; at first, k means are selected (possibly in a random man-
ner). Initial d-ranges (windows), of area a, have as centers those initial means.
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Then, the patterns that lie within each d-range are found, using the Orthogo-
nal Range Search technique of Computational Geometry [2,4,5,8,13]. The latter
technique has been shown to be effective in numerous applications and a con-
siderable amount of work has been devoted to this problem [13]. An orthogonal
range search is based on a pre–process phase where a range tree is constructed.
Patterns that lie within a d-range can be found traversing the range tree, in
polylogarithmic time. The orthogonal range search problem can be stated as
follows:

– Input:
a) V = {p1, . . . , pn} is a set of n points in R

d the d-dimensional Euclidean
space with coordinate axes (Ox1, . . . , Oxd),
b) a query d-range Q= [a1, b1] × [a2, b2] × . . . × [ad, bd] is specified by two
points (a1, a2, . . . , ad) and (b1, b2, . . . , bd), with aj � bj .

– Output:
report all points of V that lie within the d-range Q.

Having identified the patterns that lie within each d-range, their mean is
calculated. The mean defines the new center for the d-range, which implies the
movement of the d-range. The last two steps are executed repeatedly, as long
as the number of patterns included in the d-range increases as a result of the
movement.

Subsequently, the d-ranges are enlarged in order to include as many patterns
as possible from the cluster. The enlargement process terminates if further en-
largement does not increase the number of patterns included in the window.
Enlargement and movement are repeatedly executed until both processes do not
yield an increase in the number of patterns in the window.

Then, the relative frequency of patterns assigned to a d-range in the whole
set of patterns, is calculated. If the relative frequency is small, then it is possible
that a missing cluster (or clusters) exists. Thus, the whole process is repeated.

The key idea to determine the number of clusters automatically is to apply
the k-windows algorithm using a sufficiently large number of initial windows.
The windowing technique of the k-windows algorithm allows for a large number
of initial windows to be examined, without any significant overhead in time
complexity. Then, any two overlapping windows are merged, before the step of
enlarging the windows is performed. The remaining windows, after the quality
of the partition criterion is met, define the final set of clusters.

3 Parallel Implementation

At present the majority of databases are spread over numerous servers each one
holding its own data. The proposed parallel implementation of k-windows is
taking into consideration this situation. So the parallelism is mostly a storage
space parallelism. For this task we propose a parallel algorithmic scheme that
uses a multidimensional binary tree [3] for range search.



228 P.D. Alevizos, D.K. Tasoulis, and M.N. Vrahatis

Let us consider a set V = {p1, p2, . . . , pn} of n points in d-dimensional space
Rd with coordinate axes (Ox1, Ox2, · · · , Oxd). Let pi = (xi

1, x
i
2, · · · , xi

d) be the
representation of any point pi of V .

Definition: Let Vs be a subset of the set V . The middle point ph of Vs with
respect to the coordinate xi (1 � i � d) is defined as the point which divides
the set Vs-{ph} into two subsets Vs1 and Vs2 , such that:

i) ∀pg ∈ Vs1 and ∀pr ∈ Vs2 , xg
i � xh

i � xr
i .

ii) Vs1 and Vs2 have approximately equal numbers of elements: If |Vs| = t then
|Vs1 | = � t−1

2 � and |Vs2 | = � t−1
2 �.

The multidimensional binary tree T which stores the points of the set V is
constructed as follows:

1. Let pr be the middle point of the given set V , with respect to the first
coordinate x1. Let V1 and V2 be the corresponding partition of the set V -
{pr}. The point pr is stored in the root of T .

2. Each node pi of T , obtains a left child left[pi] and a right child right[pi] as
follows: MBT(pr,V1,V2,1)

procedure MBT(p,L,M ,k)
begin
k ←− k + 1
if k = d + 1 then k ←− 1
if L �= ∅ then
begin

let u be the middle point of the set L with respect to the coordinate xk.
The point u divides the set L-{u} in two subsets L1 and L2.
left[p]←− u
MBT(u,L1,L2,k)

end
if M �= ∅ then
begin

let w be the middle point of the set M with respect to the coordinate xk

and let M1 and M2 be the corresponding partition of the set M -{w}.
right[p]←− w
MBT(w,M1,M2,k)

end
end

Let us consider a query d-range Q= [a1, b1] × [a2, b2] × · · · × [ad, bd] specified
by two points (a1, a2, . . . , ad) and (b1, b2, . . . , bd), with aj � bj . The search of
the tree T is performed through the following algorithm, which accumulates the
retrieved points in a list A, initialized as empty:
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The orthogonal range search algorithm
1) A←− ∅
2) Let pr be the root of T : SEARCH(pr,Q,A,1)
3) return A

procedure SEARCH(pt,Q,A,i)
begin

if i = d + 1 then i←− 1
let pt = (xt

1, x
t
2, . . . , x

t
d)

if ai � xt
i � bi then if pt ∈ Q then A←− A∪{pt}

if pt �= leaf then
begin

if ai < xt
i then SEARCH(left[pt],Q,A,i + 1)

if xt
i < bi then SEARCH(right[pt],Q,A,i + 1)

end
end
The proposed parallel implementation uses the aforementioned range search al-
gorithm and is a Server–Slave model. Assume m computer nodes are available,
each one having a portion of the dataset Vi where i = 1, . . . , m. Firstly at each
node i a multidimensional binary tree Ti is constructed using the MBT al-
gorithm, which stores the points of the set Vi. Then parallel search is performed
as follows:

The parallel orthogonal range search algorithm
1) A←− ∅
2) For each node i do
3) Ai←− ∅
4) Let pr,i be the root of Ti: SEARCH(pri

,Q,Ai)
5) A←− A∪Ai

6) end do
7) return A

More specifically, the algorithm at a preprocessing step constructs a mul-
tidimensional binary tree for each node holding data known only to that
node.

Then a server node is used to execute the k-windows algorithm. From that
point onward the algorithm continues to work normally. When a range search
is to be executed, the server spawns the range query over all the nodes and
computes the union of the results.

The algorithmic complexity for the preprocessing step for n points in d-
dimensions is reduced to θ(dn log n

m ) from θ(dn log n) of the single node ver-
sion [13]. Furthermore the storage requirements at each node come up to θ(dn

m )
while for the single node remain θ(dn) Since the orthogonal range search
algorithm has a complexity of O(dn1− 1

d + k) [13], the parallel orthogonal
range search algorithm has a complexity of O(d ( n

m )1− 1
d +k+ε(d, m)), where

k is the total number of points included in the range search and ε(d, m) is a func-
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tion that represents the time that is required for the communication between the
master and the nodes. It should be noted that the only information that needs
to be transmitted from each slave is the number of points found and their mean
value as a d-dimensional vector. So the total communication comes to a broad-
cast message from the server about the range, and m messages of an integer and
a d-dimensional vector from each slave. Taking these under consideration, the
ε(d, m) can be computed for a specific network interface and a specified number
of nodes. For the parallel algorithm to achieve an execution time speedup the
following relation must hold:

O

(
d ( n

m )1− 1
d + k + ε(d, m)

dn1− 1
d + k

)
� 1,

which comes to:

O(ε(d, m)) � O

(
d

(
n1− 1

d −
( n

m

)1− 1
d

))
. (1)

As long as Inequality (1) holds, the parallel version of the algorithm is
faster than the single node version. In any other case the network infrastruc-
ture presents a bottleneck to the whole system that can not be overcome. In
that case the parallel version advantage is limited to storage space requirements.

4 Results

The k-windows clustering algorithm was developed under the Linux operating
system using the C++ programming language. Its parallel implementation was
based on the PVM parallel programming interface. PVM was selected, among
its competitors because any algorithmic implementation is quite simple, since it
does not require any special knowledge apart from the usage of functions and
setting up a PVM daemon to all personal computers, which is trivial.

The hardware used for our purposes consisted of 16 Pentium III personal com-
puters with 32MB of RAM and 4GB of hard disk availability each. A Pentium 4
personal computer with 256MB of RAM and 20GB of hard disk availability was
used as a server for the algorithm, while the network infrastructure was a Fast
Ethernet 100MBit/s network.

To measure the efficiency of the algorithm, two datasets were used, namely
Dset1 and Dset2, that represent a single image stored and displayed in the
RGB space, with 2 different scalings. The datasets contained approximately
310, and 410 number of points, respectively, that correspond to the number of
pixels in each image scaling. Since the color of each pixel follows red/green/blue
(RGB) color specification (three numbers between 0 and 255 indicating red,
green, and blue), each datapoint is represented by a three-dimensional vector,
corresponding to its RGB values. In Table 1 the speedup achieved for different
number of slave nodes is exhibited. It is evident from this table, that the speedup
achieved for Dset2 is greater than the speedup for Dset1. This is also suggested
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Table 1. Speedup achieved for Dset1 and Dset2

Number of Speedup for
Nodes Dset1 Dset2

2 1.0000 1.0000
4 1.4643 1.7801
8 2.5949 2.6421
16 4.2708 4.7358

by Equation (1). Furthermore we constructed a random dataset using a mixture
of Gaussian random distributions. The dataset contained 21000 points with 50
numerical attributes. The points were organized in 4 clusters (small values at
the covariance matrix) with 2000 points as noise (large values at the covariance
matrix). To test this dataset, we stored the binary tree to the hard disk of each
node. Thus, each search required much more time compared to the previous
cases. As it is exhibited in Fig. 2, for this dataset the algorithm achieves almost
9 times smaller running time when using 16 CPUs. On the other hand at every
node only the 1/16 of the total storage space is required. From Fig. 2, we also
observe an abrupt slow–down in speedup when moving from 8 to 16 nodes. This
behavior is due to the larger number of messages that must be exchanged during
the operation of the algorithm which results to increased network overhead.

Fig. 2. Speedup for the different number of CPUs

5 Conclusions

Clustering is a fundamental process in the practice of science. Due to the increas-
ing size of current databases, constructing efficient parallel clustering algorithms
has attracted considerable attention. The present study presented the parallel
version of a recently proposed algorithm, namely the k-windows. The specific
algorithm is characterized by the highly desirable property that the number
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of clusters is not user defined, but rather endogenously determined during the
clustering process. The parallel version proposed is able to achieve considerable
speedup in running time, and at the same time it attains a linear decrease on
the storage space requirements with respect to the number of computer nodes
comprising the PVM.
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