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Abstract. One of the most frequently used models for classification
tasks is the Probabilistic Neural Network. Several improvements of the
Probabilistic Neural Network have been proposed such as the Evolu-
tionary Probabilistic Neural Network that employs the Particle Swarm
Optimization stochastic algorithm for the proper selection of its spread
(smoothing) parameters and the prior probabilities. To further improve
its performance, a fuzzy class membership function has been incorpo-
rated for the weighting of its pattern layer neurons. For each neuron of
the pattern layer, a fuzzy class membership weight is computed and it is
multiplied to its output in order to magnify or decrease the neuron’s sig-
nal when applicable. Moreover, a novel scheme for multi–class problems
is proposed since the fuzzy membership function can be incorporated
only in binary classification tasks. The proposed model is entitled Fuzzy
Evolutionary Probabilistic Neural Network and is applied to several real-
world benchmark problem with promising results.

1 Introduction

A rapid development of Computational Intelligence methods has taken place re-
cently. A simple but promising model which combines statistical methods and
efficient evolutionary algorithms is the recently proposed Evolutionary Proba-
bilistic Neural Network (EPNN) [1,2]. Specifically, EPNN is based on the Prob-
abilistic Neural Network (PNN) introduced by Specht [3] that has been widely
used in several areas of science with promising results [4,5,6,7]. PNN is based on
discriminant analysis [8] and incorporates the Bayes decision rule for the final
classification of an unknown feature vector. In order to estimate the Probability
Density Function (PDF) of each class, the Parzen window estimator or in other
words the kernel density estimator is used [9]. The recently proposed EPNN em-
ploys the Particle Swarm Optimization (PSO) algorithm [10,11] for the selection
of the spread parameters of PNN’s kernels. Several other variants of PNN have
been proposed in the literature. A Fuzzy PNN is proposed in [12], where a mo-
dification of the typical misclassification proportion is minimized in the training
procedure.
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Several other remarkable efforts have taken place so that fuzzy logic [13,14]
can be incorporated into well known and widely used classification models. Such
an effort has been made in [15], where a Fuzzy Membership Function (FMF)
has been introduced and incorporated into the Perceptron algorithm. Moreover,
a Fuzzy Kernel Perceptron has been proposed in [16] in order to form a fuzzy
decision boundary that separates two classes. The FMF that was employed in
[16], is the one proposed by Keller and Hunt [15].

In this contribution an extension of the EPNN is proposed which incorporates
the aforementioned Fuzzy Membership Function (FMF). This function describes
the degree of certainty that a given datum belongs to each one of the predefined
classes. The FMF provides a way of weighting all the training vectors so that an
even better classification accuracy can be achieved.

2 Background Material

For completeness purposes, let us briefly present the necessary background ma-
terial. As it has already been mentioned, PNN is used mainly for classification
tasks. The training procedure of a PNN is quite simple and requires only a single
pass of the patterns of the training data which results to a short training time.
The architecture of a PNN always consists of four layers: the input layer , the
pattern layer , the summation layer and the output layer [1,3].

Suppose that an input feature vector X ∈ R
p has to be classified into one of

K predefined classes. The vector X is applied to the p neurons of PNN’s input
layer and is then passed to the pattern layer. The neurons of the pattern layer
are connected with all the input layers’ neurons and are organized into K groups.
Each group of neurons in the pattern layer consists of Nk neurons, where Nk is
the number of training vectors that belong to the class k, k = 1, 2, . . . , K. The
ith neuron in the kth group of the pattern layer computes its output using a
kernel function that is typically a Gaussian kernel function of the form:

fik(X) =
1

(2π)p/2|Σk|1/2
exp

(
−1

2
(X − Xik)T Σ−1

k (X − Xik)
)

, (1)

where Xik ∈ R
p is the center of the kernel and Σk is the matrix of spread

(smoothing) parameters of the kernel. The vector Xik corresponds to the ith
feature vector of the kth group of the training data set.

The summation layer comprises K neurons and each one estimates the con-
ditional probability of its class given an unknown vector X:

Gk(X) =
Nk∑
i=1

πkfik(X), k ∈ {1, 2, . . . , K}, (2)

where πk is the prior probability of class k,
∑K

k=1 πk = 1. Thus, a vector X is
classified to the class that has the maximum output of the summation neurons.

Instead of utilizing the whole training data set of size N and create a pattern
layer that consists of N neurons, a smaller training set is created so that the
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new PNN will have less memory requirements and will be much faster. The well-
known K-medoids clustering algorithm [17] is applied to the training data of each
class and K is set equal to 5% of the size of each class. Following this strategy,
the proportion of instances of a class to the whole training data set remains the
same. The adjacent training vectors are grouped as a cluster that is represented
by the corresponding medoid. Then, the obtained medoids are used as centers to
the corresponding PNN’s kernel functions of the pattern layer’s neurons. Thus,
the pattern layer’s size of the proposed PNN is about twenty times smaller than
the corresponding PNN which utilizes all the available training data resulting to
a much faster model.

For the estimation of the spread matrix Σk as well as the prior probabilities
πk, PSO algorithm is used. PSO is a stochastic population–based optimization
algorithm [10] and it is based on the idea that a population of particles are
released into a search space and travel with adaptable velocity in order to find
promising regions into it [11,18]. Moreover, they retain a memory of the best
position they have ever visited and at each step they intercommunicate to in-
form each other about their position and the value of the objective function at
that particular point. The velocity of each particle is updated according to the
particle’s best value and the swarm best value.

Let g(X) be the objective function that has to be minimized. Given a d–
dimensional search space S ⊂ R

d and a swarm consisting of NP particles, let
Zi ∈ S be the position of the ith particle and Vi be the velocity of this particle.
Moreover, let BP i be the best previous position encountered by the ith particle
in S. Assume gl to be the index of the particle that attained the best previous
position among all particles, and t to be the iteration counter. Then, the swarm
is manipulated by the equations

Vi(t + 1) = χ
[
Vi(t) + c1 r1

(
BP i(t) − Zi(t)

)
+ c2 r2

(
BPgl(t) − Zi(t)

)]
, (3)

Zi(t + 1) = Zi(t) + Vi(t + 1), (4)

where i = 1, 2, . . . ,NP; χ is a parameter called constriction coefficient; c1 and
c2 are two positive constants called cognitive and social parameter, respectively;
and r1, r2, are random vectors that are uniformly distributed within [0, 1]d [19].
All vector operations in Eqs. (3) and (4) are computed component-wise and the
best positions are then updated according to the equation

BP i(t + 1) =
{

Zi(t + 1), if g (Zi(t + 1)) < g (BP i(t)) ,
BP i(t), otherwise.

The particles are always bounded in the search space S and the constriction
coefficient is derived analytically through the formula

χ =
2κ

|2 − ϕ −
√

ϕ2 − 4ϕ| , (5)

for ϕ > 4, where ϕ = c1 + c2, and κ = 1, based on the stability analysis of Clerc
and Kennedy [19,20].
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A differentmatrix of spreadparametersΣk =diag(σ2
1k, . . . , σ2

pk), k=1, 2, . . . , K
is assumed for each class and a swarmofΣk created byPSO. The objective function
that PSO should minimize is the misclassificationproportion on the whole training
data set.

3 The Proposed Approach

One of the desirable properties that a supervised classification model should pos-
sess is the ability to adjust the impact of each training sample vector to the final
decision of the model. In other words, vectors of high uncertainty about their
class membership should have less influence on the final decision of the model,
while vectors of low uncertainty should affect more the model’s decision. One
way of obtaining this desirable property is to incorporate a Fuzzy Membership
Function (FMF) into the model. Among the large variety of classification models
we chose the EPNN due to its simplicity, effectiveness and efficiency [1,2] and we
have incorporated the FMF proposed in [15] for weighting the pattern neurons
of the EPNN. By this way, fuzzy class membership values are assigned to each
pattern neuron and for this reason the proposed model is named Fuzzy Evo-
lutionary Probabilistic Neural Network (FEPNN). The efficiency of the EPNNs
and their variants is clearly presented in [2] where the EPNNs are compared
with the best ever classification models on several problems.

Next, let us further analyze the proposed model. As it has already been men-
tioned in Section 2, Xik, i = 1, 2, . . . , Nk, k = 1, 2, . . . , K is the i–th training
sample vector that belongs to class k. Since we are dealing with a two-class clas-
sification problem, we consider K = 2. Suppose further that u(X) ∈ [0, 1] is a
fuzzy membership function, then we define:

u(Xik) ≡ uik = 0.5 +
exp

(
(−1)k [d1(Xik) − d2(Xik)] λ/d

) − exp(−λ)
2 (exp(λ) − exp(−λ))

,

where for k = 1, 2, Mk is the mean vector of class k, dk(X) = ‖X − Mk‖ is
the distance between vector X and mean vector of class k, d = ‖M1 − M2‖ is
the distance between the two mean vectors and λ is a constant that controls
the rate at which fuzzy membership values decrease towards 0.5 [15]. The fuzzy
membership values were designed so that if the vector is equal to the mean of
the class that it belongs, then it should be 1.0. Also, if the vector is equal to the
mean of the other class, it should be 0.5, meaning that this pattern neuron should
not consider the most to the final decision. Moreover, if the vector is equidistant
from the two means, then it should be near 0.5, since it cannot really help us to
the final classification. In other words, as the vector gets closer to its mean and
goes further away the other mean, its value should approach 1.0 exponentially.
Moreover, the pseudocode of the proposed approach is presented in Table 1.

As it was previously mentioned, the proposed approach can be applied only to
binary classification problems. In order to make it applicable to a wider spectrum
of tasks, we propose a way of applying it to multi-class classification problems by
using the following multi-class decomposition scheme. Assuming that K > 2, let
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Create the clustered training set Tcl tr of size Ncl tr from the
training data set Ttr.

Select initial random values for Σk and πk, k = 1, 2.
Construct PNN using Tcl tr, Σk and πk.
Compute M1, M2 and d.
For i = 1, Ncl k and k = 1, 2 do:

Compute fuzzy membership values uik using Eq. (3).
EndFor

Compute Σk and πk by PSO
For l = 1,NP do:

Initialize a swarm
Zl(0) = [σ1 1 l, σ1 2 l, . . . , σ1 p l, σ2 1 l, σ2 2 l, . . . , σ2 p l, π1 l, π2 l].

Initialize best positions BP l(0).
EndFor
For t=1,MaxGeners do:

For l = 1,NP do:
Update velocities Vl(t + 1) using Eq. (3).
Update particles Zl(t + 1) = Zl(t) + Vl(t + 1).

Constrain each particle Zl(t + 1) ∈ (0, γ]2 p × [0, 1]2.
Set MP l = 0. (Misclassification Proportion)
For m = 1, Ntr do:

Compute Out(m) = arg max
k

(
Gk(Xm) = πk

∑Ncl k
i=1 uik fik(Xm)

)
If (Out(m) �= Target(m)) Then MP l = MP l + 1.

EndFor
Set g(Zl(t + 1)) = MP l/Ntr

Update best position BP l(t + 1).
EndFor

EndFor

Write the optimal Σk and Π and the classification accuracy of the PNN
on Ttr and Tte.

Fig. 1. Pseudocode of the proposed approach

OM be the overall mean vector of the whole data set and OMk be the overall
mean vector of the data set excluding the vectors of class k, k = 1, 2, . . . , K. We
calculate the Euclidean distances Dk = ‖OM − Mk‖ and D′

k = ‖OMk − Mk‖
for all the classes and we sort the K classes according to their total distance
ODk = Dk + D′

k.
So, a sequence of K − 1 FEPNNs will be created for the final classification.

Let sk, k = 1, 2, . . . , K be the indices of the sorted classes. For the first FEPNN,
we will utilize a training set consisting of the vectors of class s1 as class 1 and
the rest of the training set as class 2. Since this is a binary classification training
set, we can use the proposed FEPNN in order to classify the “unknown” vectors
of the test set that belong to class s1. By this manner, we can record the number
of correctly classified vectors of s1 as Cs1 . This procedure is continued for the
rest of the sk, k = 2, 3, . . . , K − 1 and at every step we do not take into account
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the vectors of the classes si, i < k and we compute the classification accuracies
Csk

. At K − 1 step, we have only the last two classes left, so only one FEPNN
is needed from which we compute CsK−1 and CsK . So the final classification
accuracy is the sum of Csk

, k = 1, 2, . . . , K.
Several other multi-class decomposition schemes can be used such as the one–

vs–others (1–vs–r) or the one–vs–one (1–vs–1) scheme. In the (1–vs–r) scheme,
the problem is decomposed into a set of K two-class problems where for each class
k = 1, 2, . . . , K a classifier is constructed that distinguishes between class k and
the composite class consisting of all other classes. By this way, the training set
always consists of all the exemplars of all classes while in our proposed scheme,
in every step one class is excluded and only K−1 classifiers are constructed that
results in a faster scheme. On the other hand, using the (1–vs–1) scheme also
known as pairwise coupling where a classifier is constructed for each distinct pair
of classes using only the training samples for those classes, K(K−1)/2 classifiers
are constructed. This demands K/2 times more classifiers to be constructed
compared to our proposed scheme although we should note that in our case the
training data sets will be larger in the first steps.

4 Experimental Results

The proposed model has been applied to four binary and two multi–class bench-
mark problems from several fields of science from Proben1 database [21] that
come from the UCI repository [22] in order to evaluate its efficiency and perfor-
mance.

(1) The first data set is the Wisconsin Breast Cancer Database (WBCD) and
the target of this problem is to predict whether a breast tumour is benign
or malignant[23]. We have 699 instances and for each one of them we have
9 continuous attributes based on cell descriptions gathered by microscopic
examination such as the uniformity of cell size and shape; bland chromatin;
single epithelial cell size; and mitoses.

(2) In the second data set (Card), we want to predict the approval or non-
approval of a credit card to a customer. There are 51 attributes which are
unexplained for confidential reasons and 690 customers.

(3) The third data set is the Pima Indians Diabetes data set and the input
features are the diastolic blood pressure; triceps skin fold thickness; plasma
glucose concentration in a glucose tolerance test; and diabetes pedigree func-
tion. The 8 inputs are all continuous without missing values and there are
768 instances. The aim is to classify whether someone is infected by diabetes
or not, therefore, there are two classes.

(4) In the last binary classification data set, namely Heart Disease, its aim is to
predict whether at least one of the four major vessels of the heart is reduced
in diameter by more than 50%. The 35 attributes of the 920 patients are
age, sex, smoking habits, subjective patient pain descriptions and results of
various medical examinations such as blood pressure and cardiogram.
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(5) The fifth data set, Glass, consists of 214 instances and its aim is to classify
a piece of glass into 6 different types, namely float processed or non float
processed building windows, vehicle windows, containers, tableware and heat
lamps. The classification is based on 9 inputs, which are the percentages of
content on 8 different elements plus the refractive index and this task is
motivated by forensic needs in criminal investigation.

(6) The last data set is the Horse data set and its task is to predict the fate of a
horse that has a colic. The prediction whether the horse would survive, would
die or would be euthanized is based on 58 inputs of a veterinary examination
of the horse and there are 364 instances.

Moreover, the proposed model was applied to the aforementioned benchmark
data sets using 10 times 10-fold cross-validation where the folds were randomly
selected and the obtained results are presented in Tables 1 and 2. In order to

Table 1. Test set classification accuracy percentage of two-class data sets

Data set Model Mean Median SD Min Max

WBCD PNN 95.79 95.85 0.25 95.27 96.14
GGEE.PNN 96.39 96.42 0.20 95.99 96.71
Hom.EPNN 95.82 95.85 0.28 95.28 96.28
Het.EPNN 95.32 95.21 0.57 94.42 96.14
Bag.EPNN 96.85 96.78 0.46 96.14 97.85
Bag.P.EPNN 97.17 97.14 0.16 96.86 97.43

FEPNN 97.61 97.56 0.19 97.42 97.85

Card PNN 82.10 81.96 0.76 80.87 83.48
GGEE.PNN 84.31 84.28 0.63 83.48 85.51
Hom.EPNN 85.35 85.22 0.38 84.93 86.09
Het.EPNN 87.67 87.76 0.51 86.96 88.55
Bag.EPNN 86.64 86.67 0.51 85.80 87.39
Bag.P.EPNN 86.83 86.81 0.34 86.38 87.39
FEPNN 87.42 87.39 0.28 87.10 87.97

Diabetes PNN 65.08 65.08 0.05 64.99 65.15
GGEE.PNN 69.43 69.24 0.68 68.53 70.38
Hom.EPNN 67.67 67.58 0.88 66.03 68.80
Het.EPNN 69.37 69.46 0.80 67.73 70.54
Bag.EPNN 71.00 71.16 1.02 68.90 72.09
Bag.P.EPNN 71.22 71.39 1.00 69.75 72.54

FEPNN 75.09 75.39 0.88 73.59 76.22

Heart PNN 79.23 79.13 0.48 78.59 80.00
GGEE.PNN 80.68 80.65 0.52 79.89 81.41
Hom.EPNN 81.50 81.52 0.27 80.87 81.74
Het.EPNN 82.60 82.45 0.40 82.07 83.26
Bag.EPNN 82.28 82.34 0.62 81.20 83.15
Bag.P.EPNN 82.35 82.50 1.05 80.43 84.13

FEPNN 83.01 82.94 0.32 82.72 83.80
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Table 2. Test set classification accuracy percentage of multi-class data sets

Data set Model Mean Median SD Min Max

Glass PNN 33.25 32.61 3.40 27.96 39.01
GGEE.PNN 50.07 50.08 1.44 47.74 51.94
Hom.EPNN 68.52 68.15 1.55 66.80 70.78
Het.EPNN 75.36 75.30 1.77 73.31 77.60
Bag.EPNN 54.91 55.09 3.98 49.16 63.47
Bag.P.EPNN 52.74 51.54 4.13 48.84 63.14
Mult.EPNN 75.79 75.73 2.95 72.19 80.93
Mult.FEPNN 77.28 77.60 2.74 71.09 81.73

Horse PNN 64.63 64.74 0.72 63.05 65.42
GGEE.PNN 61.97 62.39 1.23 59.83 63.75
Hom.EPNN 66.54 66.74 0.79 65.33 67.55
Het.EPNN 68.48 68.36 0.97 67.08 69.75
Bag.EPNN 66.47 66.40 1.40 64.56 69.19
Bag.P.EPNN 66.16 66.33 1.56 63.33 67.97
Mult.EPNN 72.23 72.14 1.89 69.89 74.72

Mult.FEPNN 72.78 72.75 1.78 70.19 75.19

eliminate the influence of PSO initialization phase, we conducted 5 runs on each
cross-validated data set and selected the results (σ’s and π’s) that were obtained
by the run on which the classification accuracy was the median of the classifica-
tion accuracies on each training set. In particular, the mean, median, standard
deviation, minimum and maximum classification accuracy on the test sets is pre-
sented in the aforementioned tables. Moreover, the CPU training times are also
reported in Tables 3 and 4. In order to evaluate the performance of our model, we
have applied these six benchmark problems to Homoscedastic and Heteroscedas-
tic Evolutionary Probabilistic Neural Networks [1] as well as to original PNNs
and Bagging EPNNs [2]. For the original PNN’s implementation, an exhaustive
search for the selection of the spread parameter σ has been conducted in the
interval [10−3, 5] and the σ that resulted to the best classification accuracy on
the training set has been used for the calculation of PNN’s classification accu-
racy on the test set. The number of functional evaluations for PNN’s exhaustive
search is the same with the one of EPNNs and FEPNNs. Moreover, a variation
of the PNN that is proposed by Gorunescu et al. [24] has also been used by the
name GGEE.PNN. In multi–class problems, the proposed approach that con-
structs a sequence of EPNNs or FEPNNs has been applied with and without
the incorporation of the fuzzy membership function and is named Mult.FEPNN
and Mult.EPNN respectively.

Searching for the most promising spread matrix Σk in EPNNs and FEPNNs,
a swarm of 5 particles has been evolved for 50 generations for EPNN’s ho-
moscedastic case and a swarm of 10 particles for 100 generations for the other
cases. The space that PSO was allowed to search in, was the aforementioned
interval [10−3, 5] for Hom.EPNN, [10−3, 5]K for Het.EPNN, [10−3, 5]Kp for
Bagging EPNN and [10−3, 5]2p for FEPNN. On the Bagging EPNN case, an
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Table 3. CPU time for the training of the models (seconds)

Data set Model Mean Median SD Min Max

WBCD PNN 42.09 42.42 0.66 40.66 42.69
GGEE.PNN 1.52 1.61 0.17 1.22 1.65
Hom.EPNN 89.12 88.82 1.07 88.12 91.73
Het.EPNN 171.78 171.75 1.07 170.21 174.04
Bag.EPNN 82.78 78.07 8.86 76.22 99.75
Bag.P.EPNN 90.01 89.86 0.92 88.97 92.12
FEPNN 8.59 8.56 0.14 8.39 8.82

Card PNN 182.01 186.37 7.88 169.82 187.93
GGEE.PNN 5.46 5.45 0.06 5.38 5.53
Hom.EPNN 266.10 274.39 74.56 168.72 342.27
Het.EPNN 521.60 510.24 142.74 327.08 671.83
Bag.EPNN 309.85 309.36 1.88 307.58 314.33
Bag.P.EPN 309.73 309.84 2.62 305.26 314.95
FEPNN 28.94 28.80 0.47 28.37 29.94

Diabetes PNN 49.58 49.64 0.38 49.06 50.09
GGEE.PNN 1.87 1.87 0.03 1.83 1.90
Hom.EPNN 101.17 101.13 0.48 100.40 102.01
Het.EPNN 195.27 195.66 0.92 193.82 196.62
Bag.EPNN 106.42 106.53 0.92 104.25 107.73
Bag.P.EPNN 106.24 106.26 0.81 105.31 108.06
FEPNN 10.03 10.08 0.14 9.79 10.19

Heart PNN 207.99 223.48 45.27 125.62 241.32
GGEE.PNN 6.47 6.94 0.92 4.95 7.18
Hom.EPNN 223.28 224.35 4.28 215.15 228.97
Het.EPNN 438.10 440.29 6.82 422.45 449.24
Bag.EPNN 394.49 392.36 5.93 387.13 404.55
Bag.P.EPNN 393.22 391.47 4.95 388.02 401.03
FEPNN 38.00 38.03 0.86 36.81 39.18

ensemble of 11 EPNNs was constructed. The value of the parameter f in the
FMF was set to 0.5 after a trial-and-error procedure. In order to decide whether
parametric or non parametric statistical tests should be conducted for the sta-
tistical comparison of the models’ performance, a Kolmogorov-Smirnov test has
been conducted on each sample of runs [25]. In all the samples, the normality
assumption was met so a corrected resampled t–test was employed for the com-
parisons [26,27]. The level of significance in all the statistical tests was set to 0.05
and if a model’s mean performance is statistically significantly superior than the
second best performance, then it is depicted in a box. On the cancer data set,
the best mean performance was achieved by the FEPNN and there was a sta-
tistically significant difference between its performance and the Bag.P.EPNN’s
performance which achieved the second best performance. Moreover, FEPNN
obtained the lowest standard deviation of the classification accuracies. The best
mean performance on the Card data set was obtained by the Het. EPNN but it
was quite similar to the one that FEPNN obtained. However, FEPNN’s standard
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Table 4. CPU time for the training of the models (seconds)

Data set Model Mean Median SD Min Max

Glass PNN 3.82 3.80 0.02 3.79 3.85
GGEE.PNN 3.66 3.64 0.08 3.57 3.79
Hom.EPNN 9.16 9.26 0.65 7.99 9.95
Het.EPNN 17.21 17.47 0.76 16.04 18.27
Bag.EPNN 29.03 29.03 0.14 28.80 29.19
Bag.P.EPNN 28.30 28.31 0.11 28.10 28.48
Mult.EPNN 6.02 6.08 0.31 5.40 6.41
Mult.FEPNN 6.17 6.25 0.31 5.68 6.67

Horse PNN 29.29 29.53 0.88 26.92 30.00
GGEE.PNN 5.46 5.56 0.14 5.26 5.58
Hom.EPNN 76.10 77.98 7.97 66.17 87.37
Het.EPNN 169.92 169.92 23.39 147.73 192.11
Bag.EPNN 126.76 126.84 2.02 124.68 129.96
Bag.P.EPNN 123.03 121.61 2.24 121.35 126.92
Mult.EPNN 17.61 17.69 0.74 16.50 18.65
Mult.FEPNN 17.65 17.74 0.67 16.53 18.48

deviation was almost half of the Het.EPNN’s. Besides that, the number of pat-
tern layer’s neurons of Het.EPNN was about 690 while in the FEPNN there
were 34 neurons, which has as a result a much faster model both in training and
response time as it is confirmed in Table 3.

On the diabetes data set, the statistically significant superiority of FEPNN
is clear compared with the rest of the models. FEPNN’s standard deviation is
moreover similar to the rest of models’ standard deviation except of the one
obtained by the PNN which is much smaller but since there is such a great
difference between the mean classification accuracies, it is not worth noting. On
the heart data set, FEPNN obtained the best mean accuracy and there is a
statistically significant difference with Het.EPNN’s mean accuracy.

On the two multi–class problems, the proposed approach achieved the best
performance and especially in Horse there was a statistically significant superior-
ity than Het.EPNN. Summarizing the above, in five out of six cases the FEPNN
had a superior performance and in four of them, the superiority was statistically
significant.

Moreover, the proposed approach needs much less CPU training time than
Bagging EPNNs and Het.EPNNs in all the benchmark problems as we can ob-
serve from Tables 3 and 4.

5 Concluding Remarks

In this contribution, a novel classification model has been proposed, namely
the Fuzzy Evolutionary Probabilistic Neural Network that incorporates a fuzzy
membership function for binary classification. A novel way of handling multi–
class problems using binary classification models is also proposed.
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It has been shown that the FEPNN can achieve similar or superior perfor-
mance compared to other PNN variations both in binary and multi–class prob-
lems. Nevertheless, it is much faster in training and response times since it
utilizes only a small fraction of the training data and achieves similar or supe-
rior accuracy. It is clear that the incorporation of the fuzzy membership function
into Evolutionary Probabilistic Neural Network, helped it to obtain even more
promising results.

The proposed approach is a general purpose method since it achieves promis-
ing results in classification problems on several areas of science either binary
classification or multi-class classification problems.
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