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Abstract. Probabilistic Neural Networks (PNNs) constitute a promis-
ing methodology for classification and prediction tasks. Their performance
depends heavily on several factors, such as their spread parameters, ker-
nels, and prior probabilities. Recently, Evolutionary Bayesian PNNs were
proposed to address this problem by incorporating Bayesian models for
estimation of spread parameters, as well as Particle Swarm Optimization
(PSO) as a means to select prior probabilities. We further extend this
class of models by introducing new features, such as the Epanechnikov
kernels as an alternative to the Gaussian ones, and PSO for param-
eter configuration of the Bayesian model. Experimental results of five
extended models on widely used benchmark problems suggest that the
proposed approaches are significantly faster than the established ones,
while exhibiting competitive classification accuracy.

1 Introduction

Classification models exhibit a rapid development in the past few years, due to
their wide applicability in modern scientific and engineering applications. Prob-
abilistic Neural Networks (PNNs) [1] is a widely used classification methodology,
which has been used in several applications in bioinformatics [2, 3, 4, 5], as well
as in different scientific fields [6, 7] with promising results. PNNs constitute a
variant of the well–known Discriminant Analysis [8], presented in the framework
of artificial neural networks. Their main task is the classification of unknown
feature vectors into predefined classes [1], where the Probability Density Func-
tion (PDF) of each class is estimated by kernel functions. For this purpose, the
Gaussian kernel function is usually employed.

The type of kernels and their spread parameters, as well as the prior probabil-
ity of each class affect the performance of PNNs, significantly [9, 10]. Evolution-
ary Bayesian PNNs (EBPNNs) [11] were proposed as variants of the standard
PNNs, where the spread parameters are estimated by Bayesian models, while the
prior probabilities are determined by the Particle Swarm Optimization (PSO)
algorithm. However, the employed Bayesian models included also several param-
eters, configured through a time consuming exhaustive search procedure.
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The present work aims at extending the EBPNN model in order to reduce
the required execution time. For this purpose, new features are introduced, such
as the Epanechnikov kernels. Also, besides the prior probabilities, PSO is used
for determining the constants of the Bayesian model’s prior distributions. The
new class of models is called Extended EBPNN (EEBPNN), and five models are
compared with different established EBPNN and PNN approaches on four widely
used classification problems from the UCI repository, with promising results.

The paper is organized as follows: Section 2 contains the necessary background
information on PNNs and PSO. The proposed EEBPNN model is described
in Section 3, and experimental results are reported in Section 4. The paper
concludes in Section 5.

2 Background Material

PNNs and PSO are briefly described in this section for presentation completeness.

2.1 Probabilistic Neural Networks

PNNs are supervised neural network models, closely related to the Bayes clas-
sification rule [7, 12] and Parzen nonparametric probability density function
estimation theory [1, 13]. Their training procedure consists of a single pass over
all training patterns [1], thereby rendering PNNs faster to train, compared to
the Feedforward Neural Networks (FNNs).

Consider a p–dimensional classification task and let K be the number of
classes. Let also Ttr be the training data set with a total of Ntr feature vec-
tors, while Nk be the number of training vectors that belong to the k–th class,
k = 1, 2, . . . , K. The i–th feature vector of the k–th class is denoted as Xik ∈ R

p,
where i = 1, 2, . . . , Nk, k = 1, 2, . . . , K. Then, a PNN consists of four layers: the
input, pattern, summation , and output layer , as depicted in Fig. 1 [1, 9].
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Fig. 1. The probabilistic neural network model
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An input feature vector, X ∈ R
p, is applied to the p input neurons that

comprise the input layer, and it is passed to the pattern layer. The latter is fully
interconnected with the input layer and organized into K groups of neurons.
Each group of neurons in the pattern layer consists of Nk neurons, and the i–th
neuron in the k–th group computes its own output by using a kernel function.
The kernel function is typically a multivariate Gaussian of the form,

fik(X) =
1

(2π)p/2|Σ|1/2
exp

(
−1

2
(X − Xik)� Σ−1 (X − Xik)

)
, (1)

where Xik ∈ R
p is the center of the kernel, and Σ is the matrix of spread

(smoothing) parameters. PNNs that exploit a global smoothing parameter are
called homoscedastic, while the use of a different parameter per class is referred
to as heteroscedastic PNN [14].

The summation layer consists of K neurons and each one estimates the con-
ditional probability of the corresponding class given the input feature vector, X ,
according to the Bayes decision rule:

Gk(X) =
Nk∑
i=1

πkfik(X), k ∈ {1, 2, . . . , K}, (2)

where πk is the prior probability of the k–th class, and
∑K

k=1 πk = 1. Thus, X
is classified in the class that achieves the maximum output of the summation
neurons.

A limitation of PNNs is the curse of dimensionality. When the dimension of
the data set is large, PNNs usually do not yield good results. A faster version
of the PNN can be obtained by using only a part, instead of the whole training
data set. Such a training set can be obtained either by randomly sampling from
the available data or by finding “representative” training vectors for each class
through a clustering technique.

For this purpose, the widely used K–medoids clustering algorithm [15] can
be applied on the training data of each class. The extracted medoids are then
used as centers for the PNN’s kernels, instead of using all the available training
data. The resulted PNNs are significantly smaller with respect to the number of
neurons in the pattern layer, although there is no sound procedure for estimating
the optimal required number of medoids.

2.2 The Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) was introduced in 1995 by Eberhart and
Kennedy [16, 17], drawing inspiration from the dynamics of socially organized
groups. PSO is a stochastic, population–based optimization algorithm that ex-
ploits a population of individuals to synchronously probe the search space. In
this context, the population is called a swarm and the individuals (i.e., the search
points) are called the particles.

Each particle moves with an adaptable velocity within the search space and
retains in memory the best position it has ever encountered. This position is also
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shared with other particles in the swarm. In the global PSO variant, the best
position ever attained by all individuals of the swarm is communicated to every
particle at each iteration. On the other hand, in local PSO, best positions are
communicated only within strict neighborhoods of each particle.

Assume a d–dimensional search space, S ⊂ R
d, and a swarm consisting of N

particles. Let
Zi = (zi1, zi2, . . . , zid)� ∈ S,

be the i–th particle and

Vi = (vi1, vi2, . . . , vid)�, Bi = (bi1, bi2, . . . , bid)� ∈ S,

be its velocity and best position, respectively. Assume g to be the index of the
particle that attained the best previous position among all particles, and t be
the iteration counter. Then, the swarm is manipulated by the equations:

Vi(t + 1) = χ
[
Vi(t) + c1 r1

(
Bi(t) − Zi(t)

)
+ c2 r2

(
Bg(t) − Zi(t)

)]
, (3)

Zi(t + 1) = Zi(t) + Vi(t + 1), (4)

where i = 1, 2, . . . , N ; χ is a parameter called the constriction coefficient; c1 and
c2 are two positive constants called the cognitive and social parameter, respec-
tively; and r1, r2, are random vectors uniformly distributed within [0, 1]d [18].
All vector operations in Eqs. (3) and (4) are performed componentwise.

The best positions are then updated according to the equation:

Bi(t + 1) =
{

Zi(t + 1), if f (Zi(t + 1)) < f (Bi(t)) ,
Bi(t), otherwise.

The particles are bounded within the search space S, while the constriction
coefficient is derived analytically through the formula:

χ =
2κ

|2 − ϕ −
√

ϕ2 − 4ϕ|
,

for ϕ > 4, where ϕ = c1 + c2 and κ = 1, based on the stability analysis due to
Clerc and Kennedy [18].

3 The Proposed Extended Model

EBPNN models were proposed as a new variant of PNNs that estimate the
spread parameters through Bayesian models. More specifically, a different diag-
onal matrix of spread parameters,

Σk = diag
(
σ2

1k, σ2
2k, . . . , σ2

pk

)
, k = 1, 2, . . . , K,

for each one of the K classes is used to increase model flexibility [10, 11].
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The centered data per class, received from the preprocessing phase with the
K–medoids algorithm as described in Section 2.1, are modeled by:

Xik
iid∼ Np(μk, Σk), i = 1, 2, . . . , Nk, k = 1, 2, . . . , K.

The prior distributions of the model parameters are defined as:

μjk ∼ N (0, ν2),
τjk ∼ G(α, β), j = 1, 2, . . . , p,

where τjk = σ−2
jk and α, β, ν > 0.

In EBPNNs, it is assumed that the class centers, Xik, are conditionally in-
dependent given μk and τjk. Also, μk and τjk are also considered independent,
with joint posterior distribution:

π(μjk, τjk|X·k,j) ∝ τ
Nk
2 +α−1

jk ×exp

{
−τjk

(∑Nk

i=1 (Xik,j − μjk)2

2
+ β

)
−

μ2
jk

2ν2

}
,

where Xik,j stands for the j–th component of the p–dimensional vector Xik.
Simulation from the posterior distribution of (μjk, τjk), for j = 1, 2, . . . , p,

k = 1, 2, . . . , K, requires the application of an indirect method, such as Gibbs
sampler, since direct simulation is not feasible. The Gibbs sampler [19] produces
a Markov chain by an iterative, recursive sampling from the conditional distribu-
tions that converges in distribution to the joint distribution. The full conditional
distributions are given as follows:

μjk|τjk, X·k,j ∼ N
(

τjk

∑Nk

i=1 Xik,j

τjkNk + 1
ν2

,
1

τjkNk + 1
ν2

)
, (5)

τjk|μjk, X·k,j ∼ G
(

Nk

2
+ α,

∑Nk

i=1 (Xik,j − μjk)2

2
+ β

)
. (6)

Starting from any point in the support of the joined distribution, we draw suc-
cessively from the conditional distributions of μjk and τjk, each in turn, using
the previously drawn value of the other parameter, and the obtained sequence
converges to the joint distribution.

Conjugated prior distributions were chosen in EBPNNs, such that closed
forms are available for the full conditional distributions. The choice of conjugated
prior distributions has minor importance, since any distribution can be used as
prior. In such cases, we can use a hybrid Gibbs sampler (Gibbs sampler em-
bedding a Metropolis Hastings step) or different Monte Carlo or Markov Chain
Monte Carlo simulation methods, such as Importance Sampling and Metropolis
Hastings [20].

Based on the aforementioned Bayesian model, EBPNNs estimate the spread
parameters of their kernels. Thus, instead of estimating p×K spread parameters,
only the values of α, β, and ν, need to be determined. In recent implementa-
tions [10, 11], an exhaustive search was carried out in the range [10−4, 10], using
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Table 1. Pseudocode of the sampling procedure and the determination of the prior
probabilities with PSO in EBPNNs

Create the clustered training set T c
tr from the original training set Ttr.

// Estimation of the spread parameters using the Gibbs sampler //

Do (k = 1, 2, . . . , K)

Do (j = 1, 2, . . . , p)

Select initial value for μjk.

Do (m = 1, 2, . . . , Gmax)

Draw from Eq. (6) a new τnew
jk , using μjk.

Draw from Eq. (5) a new μnew
jk , using τnew

jk .

Set μjk ← μnew
jk and τm

jk ← τnew
jk .

End Do

Compute mean value, τjk, of τm
jk, m = 1, 2, . . . , Gmax.

End Do

Set the spread matrix Σk of class k by using the relation τjk = σ−2
jk .

End Do

// Estimation of the prior probabilities by PSO //

Initialize a swarm of particles Zi, i = 1, 2, . . . , N , within the range [0, 1]K .

Initialize best positions, Bi, and velocities, Vi, i = 1, 2, . . . , N .

While (stopping condition not met)

Update swarm using Eqs. (3) and (4).

Constrain particles within [0, 1]K .

Evaluate particles based on the classification accuracy on Ttr.
Update best positions.

End While

Write the obtained spread matrices Σk, k = 1, 2, . . . , K, and prior weights.

variable step size, for the selection of α and β. Furthermore, the value of ν was
set arbitrarily to ν = 1 [10, 11].

In standard PNNs, the prior probabilities of Eq. (2) are either estimated from
the available data or set randomly. In contrast to this procedure, EBPNNs em-
ploy the PSO algorithm to determine the most promising values for the prior
probabilities with respect to classification accuracy. Thus, a swarm of weights
is randomly generated and probes the search space of weights to find the most
promising values. The underlying objective function utilized by PSO is the clas-
sification accuracy of the PNN over the whole training data set [11]. The pseu-
docode of the Gibbs sampling phase as well as the determination of the priors
with PSO, is presented in Table 1.

The proposed Extended Evolutionary Bayesian Probabilistic Neural Network
(EEBPNN) model extends the aforementioned EBPNN models, as follows:

(1). The Epanechnikov kernel, which is defined as:

fik(X) = max
{

0, 1 − 1
2κ2

(X − Xik)� Σ−1
k (X − Xik)

}
, (7)
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where κ is the kernel’s parameter [21], is used instead of the typical Gaussian
kernels. This choice is based on the fact that the Epanechnikov kernel has
the smallest asymptotic mean integrated squared error (AMISE) and it is
considered as optimal kernel [22]. The expected gain is significantly faster
execution time, since there is no need to calculate the time–consuming
exponential functions included in the Gaussian kernel. The parameter κ
can be set arbitrarily by the user or, alternatively, determined by using the
PSO algorithm.

(2). The PSO algorithm is employed for the selection of the most appropriate
values of α and β in the Bayesian model. The constant, ν, is set to the
value 0.2, which is adequate to cover the range [−0.5, 0.5] of the data in the
considered problems.

The described EEBPNN model introduces several new features in different as-
pects of the standard PNN and EBPNN model. Generally, it is not necessary to
use all the new features concurrently in the same model. Thus, one can define
EBPNN models with Gaussian kernels, using PSO for determining the constants
of the prior distributions in the Bayesian model, as well as the prior probabilities.
Alternatively, Epanechnikov kernel can be used with the established EBPNN
and BPNN models, where Bayesian constants are determined through exhaus-
tive search. In the next section, we define several alternative models, and report
their performance on widely used classification tasks.

4 Experimental Settings and Results

We considered four widely used benchmark problems from the Proben1 bench-
mark data sets [23] of the UCI repository [24]. Specifically, we used the following
data sets:

1. Wisconsin Breast Cancer Database (WBCD): the aim is to predict whether
a breast tumor is benign or malignant [25]. There are 9 continuous attributes
based on cell descriptions gathered by microscopic examination and 699
instances.

2. Card Data Set: the aim is to predict the approval or non–approval of a credit
card to a customer [26]. There are 51 attributes (not explicitly reported for
confidential reasons) and the number of observations is 690.

3. The Pima Indians Diabetes Data Set: the aim is to predict the onset of
diabetes, therefore, there are two classes [27]. The input features are the
diastolic blood pressure; triceps skin fold thickness; plasma glucose concen-
tration in a glucose tolerance test; and diabetes pedigree function. These 8
inputs are all continuous without missing values and there are 768 instances.

4. Heart Disease Data Set: the aim is to predict whether at least one of the
four major vessels of the heart is reduced in diameter by more than 50%, so
there are two classes [28]. The 35 attributes of the 920 patients are age, sex,
smoking habits, subjective patient pain descriptions and results of various
medical examinations such as blood pressure and cardiogram.
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Table 2. Characteristics of the four benchmark data sets

Cancer Card Diabetes Heart

Number of Instances 699 690 768 920

Variables 9 51 8 35

Classes 2 2 2 2

The characteristics of the four data sets are summarized in Table 2. In our
experiments, the number of medoids extracted from each class was only the 5%
of the class size. This reduces the size of the pattern layer by a factor of 20,
compared to the standard PNN that utilizes the whole training data set. The
choice of 5% was based on numerous trials with different fractions of the class
size. Also, for the Gibbs sampler, a number of Gmax = 104 draws was used.

The following new models of the EEBPNN class were considered in our
experiments:

M1. Epan.BPNN: BPNN that uses Epanechnikov kernels with κ = 1, ex-
haustive search for the selection of the prior distributions’ constants of
the Bayesian model, and the prior probabilities are set explicitly based
on the fraction of each class in the data set.

M2. Epan.EBPNN: EBPNN that uses Epanechnikov kernels with κ = 1,
exhaustive search for the selection of the prior distributions’ constants
of the Bayesian model, and the prior probabilities are computed with
PSO.

M3. Gauss.MCPNN: EBPNN with Gaussian kernels, prior distributions’
constants of the Bayesian model estimated by PSO, and prior probabi-
lities are set explicitly based on the fraction of each class in the data
set.

M4. Gauss.PMCPNN: EBPNN with Gaussian kernels, prior distributions’
constants of the Bayesian model as well as the prior probabilities are
estimated by PSO.

M5. Epan.EEBPNN: EEBPNN with Epanechnikov kernels, where the prior
distributions’ constants of the Bayesian model, the prior probabilities
and Epanechnikov’s κ are all estimated by PSO.

Moreover, the following established PNN–based models were used for comparison
purposes:

M6. PNN: Standard PNN with exhaustive search for the selection of the
spread parameter σ.

M7. CL.PNN: Standard PNN that uses the clustered instead of the whole
training set.

M8. GGEE.PNN: A variant of the standard PNN, proposed by Gorunescu
et al. [29], which incorporates a Monte Carlo search technique.

M9. Hom.EPNN: Homoscedastic EPNN [9] that utilizes the whole training
data set for the construction of the PNN’s pattern layer.
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M10. Het.EPNN: Heteroscedastic EPNN [9] that utilizes the whole training
set.

M11. CL.Hom.EPNN: Same with the Hom.EPNN, where only the clustered
training set was used for PNN’s construction.

M12. CL.Het.EPNN: Same with the Het.EPNN, where only the clustered
training set was used.

M13. Bag.EPNN: Bagging EPNN that incorporates the bagging technique
for the prior weighting, clustered training set and generalized spread
parameters’ matrix [30].

M14. Bag.P.EPNN: Bagging EPNN with bagging, clustered training set,
generalized spread parameters’ matrix and prior probabilities estimation
by PSO.

M15. Gaus.BPNN: BPNN with Gaussian kernels and prior distributions’
constants of the Bayesian model are selected by an exhaustive search.

M16. Gaus.EBPNN: EBPNN with Gaussian kernels, prior distributions’
constants of the Bayesian model are selected by an exhaustive search,
and prior probabilities estimated by PSO.

Regarding PSO, we used the default parameter values, c1 = c2 = 2.05, and
χ = 0.729 [18]. The number of particles was set to 10, and a maximum number
of 50 generations was allowed for the detection of the prior probabilities. In
the Hom.EPNN (M9) model, the number of particles was set to 5, while in
the Het.EPNN (M10), Bag.EPNN (M13), and Bag.P.EPNN (M14) models, 10
particles were used and a maximum number of 100 iterations was allowed. For the
bagging EPNNs, 11 bootstrap samples were drawn from each clustered training
data set. Based on these samples, an ensemble of 11 EPNNs was constructed,
and the final classification was obtained by a majority voting procedure. In the
proposed EBPNN variants (M1, M2), a swarm of 10 particles was used for 50
iterations, while for the MCPNN and EEBPNN variants (M3–M5), 5 particles
were used for 30 iterations.

Every benchmark data set was applied 10 times using 10–fold cross–valida-
tion, where every time the folds were randomly selected. The mean, median,
standard deviation, minimum and maximum of the obtained classification ac-
curacies and CPU times were recorded for all models and they are reported in
Tables 3–6. Each table consists of two parts divided by a horizontal line. The
upper part contains all statistics for the five proposed models M1–M5, while the
lower part contains the statistics for the rest of the models. The best classifica-
tion performance for the proposed models, as well as for the rest of the models,
is boldfaced. Thus, there is a boldfaced line in each of the two parts of the table,
which corresponds to the best performing model of the corresponding part of
the table, with respect to its classification accuracy.

In Table 3, which corresponds to the Cancer data set, the M14 model, i.e.,
EPNN model with bagging, clustered training set, generalized spread parame-
ters’ matrix and prior probabilities estimation by PSO, exhibited the highest
classification accuracy of 97.17% and a CPU time of 90.01 seconds. On the
other hand, the most promising of the proposed models was M3, i.e., EBPNN
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Table 3. Test set classification accuracy percentages and CPU times for the Cancer
data set

Classification Accuracy (%) CPU time (sec.)

Model Mean Median St.D. Min Max Mean Median St.D. Min Max

M1 96.39 96.35 0.18 96.14 96.71 21.40 21.42 0.06 21.32 21.47

M2 96.53 96.56 0.22 96.14 96.85 24.39 24.42 0.07 24.28 24.48

M3 96.75 96.71 0.22 96.42 97.14 41.12 41.11 0.69 40.04 42.72

M4 96.75 96.71 0.17 96.42 97.00 65.04 65.65 2.91 57.23 67.78

M5 96.55 96.49 0.24 96.28 97.13 62.36 64.27 3.59 57.04 65.31

M6 95.79 95.85 0.25 95.27 96.14 42.09 42.42 0.66 40.66 42.69

M7 91.91 92.06 0.84 90.42 92.99 0.08 0.08 0.00 0.08 0.09

M8 96.39 96.42 0.20 95.99 96.71 1.52 1.61 0.17 1.22 1.65

M9 95.82 95.85 0.28 95.28 96.28 89.12 88.82 1.07 88.12 91.73

M10 95.32 95.21 0.57 94.42 96.14 171.78 171.75 1.07 170.21 174.04

M11 90.50 90.84 1.58 87.85 92.56 0.16 0.15 0.02 0.14 0.20

M12 87.89 87.78 1.74 85.27 90.56 0.32 0.33 0.06 0.24 0.43

M13 96.85 96.78 0.46 96.14 97.85 82.78 78.07 8.86 76.22 99.75

M14 97.17 97.14 0.16 96.86 97.43 90.01 89.86 0.92 88.97 92.12

M15 96.36 96.35 0.22 96.13 96.85 27.74 28.08 1.08 24.67 28.17

M16 96.51 96.49 0.14 96.28 96.71 31.62 32.02 1.33 27.84 32.16

Table 4. Test set classification accuracy percentages and CPU times for the Card data
set

Classification Accuracy (%) CPU time (sec.)

Model Mean Median St.D. Min Max Mean Median St.D. Min Max

M1 80.58 80.94 1.03 78.55 81.59 193.86 193.69 1.37 191.86 195.82

M2 82.83 83.04 0.89 81.45 84.06 203.71 203.47 1.42 201.77 205.95

M3 84.84 84.57 0.76 84.06 86.23 223.64 221.09 20.04 199.17 262.71

M4 84.64 84.64 0.66 83.77 85.66 350.22 347.19 45.94 268.26 408.51

M5 85.90 85.87 0.57 84.78 86.96 354.45 351.22 34.93 310.75 399.69

M6 82.10 81.96 0.76 80.87 83.48 182.01 186.37 7.88 169.82 187.93

M7 80.49 80.58 0.66 79.13 81.45 0.23 0.23 0.00 0.22 0.24

M8 84.31 84.28 0.63 83.48 85.51 5.46 5.45 0.06 5.38 5.53

M9 85.35 85.22 0.38 84.93 86.09 266.10 274.39 74.56 168.72 342.27

M10 87.67 87.76 0.51 86.96 88.55 521.60 510.24 142.74 327.08 671.83

M11 82.02 81.81 1.15 80.73 84.49 0.49 0.47 0.06 0.46 0.66

M12 85.20 85.36 0.97 83.34 86.52 0.66 0.70 0.14 0.42 0.86

M13 86.64 86.67 0.51 85.80 87.39 309.85 309.36 1.88 307.58 314.33

M14 86.83 86.81 0.34 86.38 87.39 309.73 309.84 2.62 305.26 314.95

M15 84.93 85.00 0.25 84.49 85.22 215.39 214.92 1.24 214.14 217.49

M16 86.21 86.02 0.54 85.66 87.54 229.49 228.98 1.37 228.09 231.70
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Table 5. Test set classification accuracy percentages and CPU times for the Diabetes
data set

Classification Accuracy (%) CPU time (sec.)

Model Mean Median St.D. Min Max Mean Median St.D. Min Max

M1 73.90 73.93 1.16 71.89 75.91 25.18 25.38 0.64 23.37 25.44

M2 71.68 71.79 1.08 69.92 73.55 28.61 28.86 0.81 26.31 28.93

M3 66.79 66.72 0.56 66.05 67.93 37.82 37.87 0.76 36.59 39.19

M4 73.88 73.64 0.53 73.35 74.49 49.92 49.52 1.18 48.80 51.59

M5 74.64 74.47 1.18 72.80 76.69 56.29 56.53 1.42 54.15 58.18

M6 65.08 65.08 0.05 64.99 65.15 49.58 49.64 0.38 49.06 50.09

M7 65.08 65.08 0.05 64.99 65.15 0.10 0.10 0.00 0.10 0.11

M8 69.43 69.24 0.68 68.53 70.38 1.87 1.87 0.03 1.83 1.90

M9 67.67 67.58 0.88 66.03 68.80 101.17 101.13 0.48 100.40 102.01

M10 69.37 69.46 0.80 67.73 70.54 195.27 195.66 0.92 193.82 196.62

M11 65.35 65.14 0.48 64.99 66.35 0.18 0.18 0.00 0.17 0.18

M12 69.30 69.18 1.59 67.08 72.36 0.36 0.36 0.01 0.35 0.38

M13 71.00 71.16 1.02 68.90 72.09 106.42 106.53 0.92 104.25 107.73

M14 71.22 71.39 1.00 69.75 72.54 106.24 106.26 0.81 105.31 108.06

M15 74.21 74.35 0.93 72.43 75.91 25.18 25.63 1.09 22.48 25.79

M16 72.93 73.26 1.50 69.92 75.06 29.62 30.27 1.51 25.94 30.43

Table 6. Test set classification accuracy percentages and CPU times for the Heart
data set

Classification Accuracy (%) CPU time (sec.)

Model Mean Median St.D. Min Max Mean Median St.D. Min Max

M1 72.26 72.12 0.48 71.52 72.94 88.26 88.17 0.47 87.52 89.27

M2 73.32 73.31 0.48 72.72 74.02 104.54 104.28 0.72 103.55 106.12

M3 82.11 82.17 0.66 80.54 83.04 158.79 152.13 14.25 145.29 182.52

M4 81.82 81.90 1.06 79.78 83.37 160.80 163.87 9.40 147.96 174.22

M5 81.82 81.90 1.06 79.78 83.37 151.42 150.62 8.70 143.03 173.56

M6 79.23 79.13 0.48 78.59 80.00 207.99 223.48 45.27 125.62 241.32

M7 79.84 79.78 0.71 78.48 80.98 0.32 0.32 0.02 0.30 0.35

M8 80.68 80.65 0.52 79.89 81.41 6.47 6.94 0.92 4.95 7.18

M9 81.50 81.52 0.27 80.87 81.74 223.28 224.35 4.28 215.15 228.97

M10 82.60 82.45 0.40 82.07 83.26 438.10 440.29 6.82 422.45 449.24

M11 79.96 79.95 0.56 79.24 81.09 0.67 0.63 0.08 0.61 0.83

M12 77.62 77.66 1.16 75.98 79.35 1.37 1.31 0.16 1.19 1.70

M13 82.28 82.34 0.62 81.20 83.15 394.49 392.36 5.93 387.13 404.55

M14 82.35 82.50 1.05 80.43 84.13 393.22 391.47 4.95 388.02 401.03

M15 80.46 80.43 0.69 79.13 81.52 88.55 88.54 0.38 87.92 89.03

M16 81.60 81.68 0.65 80.44 82.61 106.71 106.79 0.56 105.79 107.53
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Table 7. The gain and loss percentages for classification accuracy and CPU between
the best performing of the proposed and the rest of the models, for each benchmark
problem. Negative values denote loss instead of gain.

Best proposed Best of the Gain in classifi- Gain in

model rest models cation accuracy CPU time

Cancer M3 M14 −0.4% 54.3%

Card M5 M10 −2.1% 32.1%

Diabetes M5 M15 0.5% −55.2%

Heart M3 M10 −0.5% 63.7%

with Gaussian kernels, prior distributions’ constants of the Bayesian model are
selected by PSO, and prior probabilities that are set explicitly based on the frac-
tion of each class in the data set, with a classification accuracy of 96.75% and
CPU time equal to 41.12 seconds. Thus, the proposed model provides a satis-
factory performance that is almost 0.4% worst with respect to its classification
accuracy than the best performing model, but at a 54.3% gain in CPU time.

In the results for the Card data set, reported in Table 4, the M10 model,
i.e., Heteroscedastic EPNN trained with the whole training set, had the best
performance, 87.67%, among all models, with a CPU time of 521.60 seconds.
The most promising from the proposed models, was M5, i.e., EEBPNN with
Epanechnikov kernels, where the prior distributions’ constants of the Bayesian
model, prior probabilities and Epanechnikov’s κ are all estimated by PSO. M5
had a classification accuracy of 85.90% at the cost of a CPU time equal to 354.45
seconds. Thus, M5 had a competitive performance that is about 2% worst than
the best model, although requiring 32% less CPU time.

In the Diabetes data set, reported in Table 5, the proposed M5 model had
the best performance, 74.64%, among all models. However, this came with an
increased CPU time of 56.29 seconds, compared to M15, which was the best
performing among the rest of the models, with classification accuracy of 74.21%
and CPU time 25.18 seconds. M15 consists of a BPNN with Gaussian kernels and
prior distributions’ parameters of the Bayesian model estimated by an exhaustive
search.

In the Heart data set, reported in Table 6, M10 was again the best performing
model as for the Card data set, with a classification accuracy of 82.60% and CPU
time equal to 438.10 seconds. On the other hand, M3 was the best performing
from the proposed models, with an accuracy of 82, 11%, which is 0.5% worse
than M10, but at a computational cost of 158.79 seconds, i.e., it was 63.7%
faster than M10.

In Table 7, we summarize all the gain and loss in classification accuracy and
CPU time between the the best performing of the proposed and the rest of the
models, for each benchmark problem, with negative values denote loss instead of
gain. As we observe, the proposed models M3 and M5 have the best performance
among the five proposed models M1–M5. They were able to achieve highly com-
petitive classification accuracies but at significantly lower computational times,
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rendering them promising variants that can be useful especially in time–critical
applications.

5 Conclusions

We proposed a class of Extended EBPNN models that incorporate several new
features compared to the standard EBPNNs. These features include the use of
the Epanechnikov kernel instead of the standard Gaussian kernels, as well as the
selection of the prior distributions’ constants of the Bayesian model by using
the PSO algorithm. Five models are proposed that incorporate alternatively the
aforementioned features, and four widely used benchmark classification problems
from the UCI repository are employed to investigate their performance against
several established PNN–based classification models.

The obtained results show that the proposed models can be competitive to
the best performing of the rest models, while achieving significantly faster com-
putation times in most cases. Thus, the proposed model can be considered as
a promising alternative in time–critical PNN applications, although further re-
search is needed to fully reveal the potential of EEBPNNs in such applications.
However, in one of the test problems, the proposed model had the best perfor-
mance overall, but at a higher computational cost.
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