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Abstract. Drum rhythm automatic construction is an important step
towards the design of systems which automatically compose music. This
work describes a novel mechanism that allows a system, namely the evo-
Drummer, to create novel rhythms with reference to a base rhythm.
The user interactively defines the amount of divergence between the
base rhythm and the generated ones. The methodology followed to-
wards this aim incorporates the utilization of Genetic Algorithms and
allows the evoDrummer to provide several alternative rhythms with spe-
cific, controlled divergence from the selected base rhythm. To this end,
the notion of rhythm divergence is also introduced, based on a set of
40 drum–specific features. Four population initialization schemes are
discussed and an extensive experimental evaluation is provided. The
obtained results demonstrate that, with proper population initializa-
tion, the evoDrummer is able to produce a great variety of rhythmic
patterns which accurately encompass the desired divergence from the
base rhythm.

1 Introduction

Rhythm is an important aspect of music, an argument amplified by the fact that
a great amount of research is performed towards the identification of rhythmic
characteristics in music excerpts and the automatic generation of rhythms for
the generation of novel music. In the field of automatic generation of rhythms,
the utilization of evolutionary algorithms is among the most popular techniques.
Several methodologies (among the ones cited below) incorporate the creation of
rhythmic sequences without further determining whether these sequences are for
tonal or percussion music instruments. The Genetic Algorithm (GA) approach
specifically, has proven to be an efficient approach, either in an evolutionary
scheme which utilizes Interactive Evolution (IE) [6], or in a feature based evo-
lution [7]. IE discusses the assignment of fitness by human listeners with an
objective rating or selecting process, while feature–based evolution leads succes-
sive generation towards populations that satisfy certain subjective criteria.

Several works have focussed on the generation of rhythms targeted for per-
cussive instruments or drums. These approaches utilize either real–value rhythm
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encoding [1], or evolution of automatic agents–percussionists [3] among other
techniques. Several other approaches further specify the instrumentation of the
drums by incorporating different onset attributes, like left and right hand on-
sets that form paradiddles [10]. Additionally, some works pivot around acknowl-
edging and generating rhythms from standard drums setups (kick drum, snare
drum and hi–hat). These approaches either incorporate the identification of drum
rhythms from audio and the recombination of the audio parts to generate novel
rhythms [8], [2] (see Chapter 6), or the identification and generation of symbolic
drum sequences. Specifically, the latter two approaches may provide proper drum
sequences for a given melodic excerpt [5], create fill–in patterns according to the
provided drums rhythm [12], or recombine drum loops to generate novel ones
that share similar complexity characteristics [9]. In [11] a system is presented
which receives a reference drum rhythm defined by the user and outputs a similar
rhythm from a database, based on a set of drum similarity features.

The motivation of the paper at hand is the automatic generation of various
drum sequences with reference on a template rhythm called the base rhythm. The
drum rhythms discussed in this work, incorporate a typical drum set that com-
prises a hi-hat H, a snare S and a kick K. These percussive elements are among the
most commonly used and they compound the minimal set of percussions eligible
to roughly reproduce the majority of popular rhythms made by a drum set. This
set of percussions was also used in several other works in the literature [11,5,8,2].
The similarity level between the base rhythm and the generated ones is defined
by the user and novel rhythms are constructed using a GA–based scheme. The
described mechanism is incorporated in an interactive real–time rhythm compo-
sition system called evoDrummer, which it is available for download at [4]. In turn,
the notion of rhythm divergence is introduced and a methodology is described for
the divergence computation between two rhythms. The defined divergence mea-
sure is performed using a set of 40 drum–specific features, several of which rep-
resent a novelty of this work. Next, the underlying evolutionary mechanism that
produces rhythms with a certain desired divergence from a base rhythm is intro-
duced, with emphasis on the fitness evaluation. The foremost aim of this work is
to provide an extensive experimental evaluation on the population initialization
process. To this end, four initialization schemes are examined and results are re-
ported in terms of their ability to produce fit and diverse rhythms. The paper
concludes with some pointers for further research directions.

2 Rhythm Divergence

This section proposes a set of drum features that consider the H, S and K percus-
sive elements. Next, it introduces the notion of rhythm divergence and proposes
a divergence measure that encapsulates the similarity (or difference) between
two rhythms. The divergence computation is based on an array of each rhythm’s
features and a conditional utilization of the mean relative distance between these
two arrays.
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2.1 Proposed Drums Features

Table 1 presents a compilation of 40 drum features, which comprise a feature ar-
ray that characterizes each drum rhythm. In the next paragraph, the divergence
(or dissimilarity) of two rhythms is measured with the utilization of their feature
arrays. Some of these features have been in the literature, like the syncopation,
symmetry and density of isolated percussive elements (see [9,7] and references
therein). To compute the rest of the features, different attributes are considered
for each drum element, in accordance to its contribution to the overall rhythm
perception. For example, the main rhythm impression is provided by the K and
S onsets, while the H is mostly acting like an auxiliary element providing the
main pulse. Hence, several statistics can be considered solely for the K and S

drums. Furthermore, a segregation of snare and kick onsets is realized, in ac-
cordance to their role in the rhythm. Loud onsets are considered to contribute
to the main rhythm impression, while weaker onsets are considered as aesthetic
embellishments, like “ghost notes”. Therefore, in the description of the features
that follows, an additional binary rhythm array in {0, 1}1×16 is considered, which
models the main rhythm impression. Therein, the main beats are indicated with
1, while weaker onsets with 0. The threshold for defining an onset as loud, is the
75% of the loudest onset in the rhythm under discussion.

Table 1. The proposed drum features

feature indexes feature description

1–4 density, syncopation, symmetry and weak-to-strong ratio of the
strong beat

5–16 density, syncopation, symmetry and weak-to-strong ratio of each
drum element (4 features times 3 elements, 12 total features)

17–19 number of simultaneous pairs of drums onsets (H–K, H–S and
S–K), divided with the number of total onsets1.

20–23 number of transitions between all combinations of K and S, di-
vided with the number of total transitions between all combina-
tions of K and S.

24–26 number of isolated H, S or K onsets, divided with the number of
total onsets.

27–32 intensity mean value and standard deviation for each drum ele-
ment.

33–40 mean value and standard deviation of intensity difference be-
tween all combinations of S and K elements. Mean values are
increased by the 5, in order to have zero minimum value.

1 The total number of onsets is the number of beat subdivisions where at least
one drum element is played (in the current measure analysis, it is an integer in
{0, 1, . . . , 16}.)
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2.2 Measuring Rhythm Divergence

The divergence between two rhythms is measured here by comparing the “mean
relative distance” (MRD) of their feature arrays, as described in the previous
paragraph. The MRD between two vectors, v1 and v2 ∈ R

1×k, is measured as

dMRD =
1

k

k∑

i=1

|v1(i)− v2(i)|
max({v1(i),v2(i)}) ,

where the index i denotes the i–th element of the array. The MRD between
two rhythms’ feature vectors is a real value in [0, 1], with 0 meaning the same
rhythm (no divergence), while higher values characterize pairs of rhythms with
greater dissimilarities. It has to be noted that this divergence measure has the
described functionality if all the vector elements have zero minimum value. This
fact explains the addition of the constant (integer 5) to the group of features
33–40 in Table 1. The quantity of this divergence measure is not affected by each
feature’s “scale” of measurement, as long as all features are between zero and an
arbitrarily high value. Therefore, the MRD may be considered as a “percentage”
of rhythm difference. The proposed rhythmic divergence, as has hitherto been
described, disregards information about which features are actually responsible
for the magnitude of the divergence. This fact allows many alternative rhythms
to be considered as well fitted by the selection process, as discussed later in
the analysis about fitness evaluation in Section 3.2. As a result, evoDrummer is
capable of composing numerous different but equally fit rhythms, under certain
user demands.

3 The Proposed GA-Based Schemes

The evolutionary strategy is a typical GA-based approach, i.e. it encompasses
the standard crossover and mutation operators. However, four population ini-
tialization approaches are discussed, which have different population variability
potentialities. Furthermore, the chromosome representation introduces the in-
corporation of intensity variations of percussive onsets, which allows the expres-
sional characteristics of drum excerpts to be highlighted.

3.1 Phenotype and Genotype and Evolution of Drum Rhythms

The GA nomenclature incorporates the terms “phenotype” and “genotype” to
refer to the representation of data in a given problem and the respective genetic
modeling of these data. In the problem at hand, the phenotype is the represen-
tation of drum rhythms, while the genotype is the representation of rhythms in
a form that the standard genetic operators are applicable. The phenotype is a
matrix representation, called the rhythm matrix, with each row corresponding to
the activity of a drum element, and each column representing a certain subdivi-
sion of a music measure. The number of drum elements determines the number
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of rows, while the number of measure subdivisions the number of columns in
the rhythm matrix. A zero matrix entry denotes that the drum in the specified
row, at the beat specified by the column, remains silent (i.e. does not produce
an onset). A non–zero entry denotes an onset with “intensity” defined by the
magnitude of this entry. Any abstract refinement of intensities is plausible, but
for the presented results we utilized 6 intensity scales, represented by integers
in the set I = {1, 2, . . . , 6}. Using more than 6 scales was not considered to
produced a significantly richer variety in perceived intensities, as studied after
careful listening by the authors. Further investigation on this subject, however,
is necessary. Using these terms, a rhythm matrix can be defined as a matrix
M ∈ (I ∪{0})n×m, where n is the number of instruments, and m is the number
of measure subdivisions.

The genotype of a rhythm matrix, also referred to as chromosome represen-
tation, is constructed with the serial concatenation of all its rows. The first row
occupies the first part of the chromosome array and subsequent rows follow, as
depicted if Fig. 1. Therefore, the chromosome CM of a rhythm matrix M is an
array with the property CM ∈ (I ∪ {0})1×n·m. A set of initial rhythms, which
comprise the initial generation, is fed into the GA evolutionary process. New
rhythms (or a new generation of rhythms) are produced, which provide better
solutions to the problem at hand. Four possible population initialization schemes
are discussed later. The evolution of the initial and the subsequent generations
is realized through the utilization of standard genetic operators, which can be
applied to a set of the aforementioned chromosome representation of rhythms,
namely the following two:

1. The crossover operator: this operator incorporates the exchange of equally
sized random parts between two chromosomes. The result is the creation of
two new chromosomes, named children, which encompass characteristics of
both initial chromosomes, named parents.

2. The mutation operator: mutation acts on the chromosome by assigning a
random value to a random element. In the case of CM, this random value
should be an integer value in {0, 1, . . . , 6}.

The selection of the parent rhythms at each step of evolution is performed by
a selection process that is biased towards individuals which constitute a better
solution to the problem. A measurement of how good a rhythm is, in accordance
to the specific problem, is realized with a fitness evaluation process which is
described in the following paragraph. This work utilizes the roulette selection,
according to which an individual is selected for breeding the new generation,
with a probability that is proportional to its fitness.

3.2 Fitness Evaluation

A proper fitness evaluation methodology is crucial for the GA to produce effective
results. The motivation of this work, as stated in Section 1, is the generation of
rhythms which diverge by a certain amount from a base rhythm. This divergence
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Fig. 1. Depiction of the rhythm matrix to chromosome transformation

is measured by the MRD, as described earlier in Section 2.2. Suppose that we
have a base rhythm with a feature array denoted by rb, and a novel rhythm with
a feature array denoted by rn. Suppose also that the desired divergence between
the base and the novel rhythm is dd. Then, the fitness of rhythm rn according
to the desired divergence is frn = |dMRD(rb, rn) − dd|, which is the distance
between the desired and the observed rhythm divergence. Through evolution, the
rhythms that have a fitness value closer to 0 are promoted to the next generation;
thus, these rhythms have a divergence from the base rhythm which is close to
the desired one. As mentioned in Section 2.2, this divergence measure does not
incorporate any information about which rhythm features are responsible for
its magnitude. When the user provides a base rhythm and a desired magnitude
of divergence, the responses that the evoDrummer provides may encompass a
large set of different rhythms. Further discussion on this issue is provided in the
experimental results presented in Section 4.2.

3.3 Four Initialization Schemes

The evolutionary scheme that has hitherto been described, begins with the for-
mulation of an initial generation of rhythms that breeds the next generations,
creating populations of rhythms that are better fit. The paper at hand discusses
four such different population initialization schemes, with different strategies on
selecting a blend of random and non–random initial rhythms. Specifically, the
non–random initial rhythms are copies of the base rhythm itself. The rationale
behind these schemes is to allow evolution to combine random rhythmic parts
with segments of the base rhythm, creating new ones which diverge from the
base rhythm by a certain amount. The random and non–random blending can
be described by a blending ratio, b ∈ [0, 1], which describes a rough percentage
of random rhythms in the initial population. Therefore, if the initial population
is composed of N rhythms, then the random members are [N · b], where [x] is
the integer part of a real number x.

The examined initialization schemes are the following:

1. Random: This initialization scheme is an extreme blending case where b = 1,
meaning that only random rhythms constitute the initial population.

2. Self: This initialization is the opposite of the previous case with blend-
ing ratio b = 0, where only copies of the base rhythm compose the initial
population.

3. Half: The initial population comprises a fixed blend of half random rhythms
and base rhythm replicates, thus b = 1/2.
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4. Analog: In this initialization scheme, the blending of rhythms is proportional
to the desired divergence. Specifically, the blending ratio is equal to the
desired divergence measure, b = dd.

The extreme Random and Self initializations are examined as test cases, in order
to observe how close (or far) from the base rhythm can an initial breed of rhythms
be evolved. The actual comparison that is expected to take place is presumably
between the Half and Analog initialization strategies.

4 Experimental Results

The experimental results aim to examine two aspects of the proposed methodol-
ogy. Firstly, the efficiency of the proposed evoDrummer methodology under all
the proposed initialization schemes considered, by measuring the fitness of the
best individuals in several simulations. Secondly, the diversity among the best
generated rhythms is analyzed, in order to measure the ability of the system to
produce alternative rhythms with the desired divergence from a base rhythm.
To this end, a set of six base rhythms constructed by the authors was utilized,
ranging from simple to more complex rhythms. The rationale behind not us-
ing random base rhythms, is the necessity to assess the system’s performance
in accordance with the features produced by human–created rhythms. All the
simulations described in the next paragraphs incorporated a fixed population
size of 100 rhythms, a number of 100 generations, the crossover and mutation
genetic operators and the roulette selection process, as described in Section 3.
Furthermore, the desired divergence was considered as successfully achieved if
the fitness of the best individual in a generation was below 0.0001 (error toler-
ance). For each of the six base rhythms, 50 simulations were conducted in order
to assess performance statistics, as well as to examine the similarity between all
the generated rhythms and their characteristics. Finally, results are reported for
desired divergences in the set {0 : 0.025 : 1}, which are the real numbers from
0 to 1 with an increment step of 0.025. Experimental results do not incorporate
rhythm examples, since the interested reader may create as many examples as
she/he wishes by using the downloadable application [4].

4.1 Adaptivity per Initialization Scheme

The fitness mean and standard deviations of the best fitted individuals for all
desired divergences, among all 50 simulations for every rhythm are illustrated in
Fig. 3. One may first notice that the fitness of the best rhythms becomes worse as
the desired divergence moves from 0.625 and above for all initialization schemes.
This fact highlights the lack of descriptiveness of the MRD distance, as defined in
Section 2.2, when incorporating vastly different arrays. For instance, the highest
value of MRD, dMRD = 1, is achieved only if one of the two measured arrays is
the zero array. Another notable fact is the inability of the Random initialization
process to produce rhythms which are evolved towards the base rhythm, for
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all base rhythms, as depicted in Fig. 2. This fact also pinpoints that there is
a vast difference between human–created rhythms and random ones, since the
evolution of the latter may hardly follow the structure of the former.
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Fig. 2. Fitness per initialization scheme for each rhythm separately

For desired divergence with magnitude larger than 0.625, the performance
of the Self initialization scheme is the worst. This denotes that the exclusive
utilization of the base rhythm itself, under several evolutionary steps (with the
crossover and mutation operators as described here) is not enough to entirely
alter its characteristics. This fact, along with the poor performance of the other
extreme initialization methodology – the Random initialization – allows the re-
jection of these two methodologies within the presented framework. Table 2
presents the mean values and standard deviations of the fitness results, catego-
rized in different desired divergence groups according to the findings in Fig. 3.
Therein, one may clearly observe in numeric terms the two aforementioned con-
siderations about the Random and Self initializations. Additionally, it is also
clear that there is a relative decrease in the low similarity divergence region (0–
0.125), compared to the middle divergence range (0.15–0.625). This may be an
evidence that it is difficult to automatically devise human–like rhythms (accord-
ing to the proposed features at least), even if the automatic generation process
originates from the human–created rhythm itself. It also has to be noted that
all the initialization techniques which used any proportion of base rhythm repli-
cates, produced a perfectly fitted individual from the initial generation at the 0
divergence level, which was the base rhythm itself.

4.2 Diversity of Produced Rhythms

An important aspect of evoDrummer is its ability to compose a diverse set of
novel rhythms which diverge by a certain amount from the base rhythm. Two
experimental measurements are utilized to evaluate this diversity, over all the
desired divergences available (dd = 0 : 0.025 : 1). Firstly, the rhythm diversity is
measured explicitly: for a given divergence and base rhythm, we assess a percent-
age of how many unique rhythms are returned throughout the 50 simulations.
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Fig. 3. Fitness per initialization scheme for all rhythms

Table 2. Mean and standard deviation of fitnesses in several divergence regions. Best
fitness in each region is demonstrated in boldface.

divergence range: 0–0.125 0.15–0.375 0.35–6.25 0.65–1.0

Random 0.1939 (0.0772) 0.0399 (0.0446) 0.0001 (0.0004) 0.1694 (0.0455)

Self 0.0022 (0.0048) 0.0003 (0.0006) 0.0006 (0.0015) 0.1844 (0.0507)

Half 0.0017 (0.0027) 0.0002 (0.0004) 0.0001 (0.0002) 0.1705 (0.0459)

Analog 0.0021 (0.0045) 0.0002 (0.0005) 0.0000 (0.0001) 0.1690 (0.0452)

This percentage is measured as the unique rhythm ratio, divided with the number
of total rhythms returned by each simulation (50 in number). Therefore, the
unique rhythm ratio can take a value in [ 1

50 , 1], where the extreme values denote
that all rhythms are the same (value 1

50 ), or every pair of rhythms is different
(value 1). Secondly, the diversity is measured through the feature difference of
all the produced rhythms. The diversity of features among the 50 best rhythms
returned by each simulation is measured with the mean value of the standard
deviation of these features, as it is discussed more thoroughly later.

The unique rhythm ratios are illustrated in Fig. 4, for divergence values below
0.275, since above this value, almost all ratios for every base rhythm are nearly
equal to 1. Additionally, the mean and standard deviation of the unique rhythm
ratios for several groups of divergences are demonstrated in Table 3. These results
indicate that for small desired divergences, the produced results may incorpo-
rate non–unique rhythms, at some extent, except from the Random initialization,
which has the highest unique rhythm ratio value for every measured divergence.
A more detailed look in Fig. 4 reveals that the simplest base rhythms consid-
ered (rock1 and rock2) maintain a lower–than–unit unique rhythm ratio for
divergences that approach 0.25, for all initializations except Random.

The second part of the diversity analysis incorporates the assessment of the
standard deviation for each feature, over all 50 simulations with a target rhythm–
divergence pair. Thereafter, the standard deviation of each feature is divided
with the feature’s maximum value over all 50 simulations, in order to obtain
a “normalized” version of the standard deviation measurements. As a result,
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Fig. 4. Rhythm diversity per initialization scheme. For divergence values above the
depicted ones (greater than 0.275), rhythm novelty ratio is approaching 1.

Table 3. Mean unique rhythm ratios for all test rhythms in certain desired diver-
gence groups. Standard deviations are demonstrated in parentheses. The initialization
schemes (except random initialization) with the highest identical rhythm ratio are
demonstrated in boldface typesetting.

divergence range: 0–0.125 0.15–0.275 0.3–0.425 0.45–1.0

Rand 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000) 1.0000 (0.0000)

Self 0.7161 (0.3523) 0.9694 (0.0223) 1.0000 (0.0000) 1.0000 (0.0000)

Half 0.6811 (0.3328) 0.9717 (0.0255) 0.9994 (0.0014) 1.0000 (0.0000)

Analog 0.7033 (0.3421) 0.9733 (0.0173) 0.9994 (0.0014) 1.0000 (0.0000)

the feature diversity among all simulations of a certain base rhythm–desired
divergence setup, are represented by a “normalized” vector, which encompasses
a description of the “relative” diversity of each feature. Consequently, the mean
relative diversity, along with their standard deviation allow an overview of all the
features’ diversities per desired divergence, for each base rhythm scenario. These
results are depicted in Fig. 5, where the aforementioned mean value and standard
deviation are demonstrated as error–bars. It has to be noted that the scale of
the results (the y-axes values) does not provide any quantitative information; the
informative part of this graph is the diversity changes according to divergence
and base rhythm.

Feature diversity does not seem to follow any pattern with the Random initial-
ization processes. The utilization of the rest initialization schemes on the other
hand, seems to follow a trend of increasing diversity, as divergence increases, up
to one certain point. The point that the increasing trend terminates, seems to
differ for different rhythm and initialization procedures. Afterwards, a descend-
ing trend is observed, followed by random feature diversity fluctuations, which
are compared to the ones produced by the Random initialization scheme. Further
analysis based on the findings of these graphs could reveal additional charac-
teristics of the rhythms that are produced by each initialization process. This
analysis can be the subject of a future work.
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Fig. 5. Feature diversity for different divergence values

5 Conclusions

The paper at hand introduces the methodological context that led to the con-
struction of evoDrummer, a system that utilizes interactive genetic algorithms
to automatically compose novel drum rhythms. This context allows the gener-
ation of novel rhythms that diverge by a certain amount from a base rhythm.
According to the overall architecture employed, the user selects a base rhythm
from a list of template drum rhythms and sets a desired divergence rate. There-
after, the system is able to create several different novel rhythms that diverge
from the base rhythm by the specified amount. To this end, the notion of rhythm
divergence is introduced, which is based on a set of drum features. The proposed
features consider not only the onsets of the basic drum elements (kick, snare
and hi-hat), but also their intensities which are a crucial part for the perception
of drum rhythms. An evolutionary scheme based on Genetic Algorithms (GA)
leads an initial population of rhythms to ones that are better fitted to the dis-
cussed problem, i.e. diverge from the base rhythm by the desired amount. Four
different initialization schemes are discussed and extensive experimental results
are reported, which outline the strengths and weaknesses of each methodology
and the diversity of the rhythms they produce.

Future work may primarily incorporate a modification of the divergence mea-
sure, the mean relative distance (MRD) of features, so that it may more ac-
curately describe extremely high divergences (a problem which is discussed in
Section 4.1). Afterwards, novel drum features along with an analysis on the pro-
posed ones should be conducted, in order to obtain a more solid basis for rhythm
similarity assessment. In parallel, the evolutionary process may be substantially
assisted by the utilization of several variants of the standard crossover and mu-
tation operators that were applied. Finally, a more thorough investigation on the
findings of Fig. 5 should be realized, in order to examine the relations that may
emerge between rhythm characteristics, as expressed by the rhythm features,
and population initialization processes.
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