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Abstract. A technique for Fuzzy Cognitive Maps learning, which is ba-
sed on the minimization of a properly defined objective function using
the Particle Swarm Optimization algorithm, is presented. The workings
of the technique are illustrated on an industrial process control pro-
blem. The obtained results support the claim that swarm intelligence
algorithms can be a valuable tool for Fuzzy Cognitive Maps learning,
alleviating deficiencies of Fuzzy Cognitive Maps, and controlling the sy-
stem’s convergence.

1 Introduction

Fuzzy Cognitive Maps (FCMs) constitute a promising modeling methodology
that provides flexibility on the simulated system’s design, modeling and control.
They were introduced by Kosko for the representation of causal relationships
among concepts as well as for the analysis of inference patterns [1,2]. Up–to–
date, FCMs have been applied in various scientific fields, including bioinforma-
tics, manufacturing, organization behavior, political science, and decision ma-
king. Although FCMs constitute a promising modeling methodology, they have
some deficiencies regarding the robustness of their inference mechanism and their
ability to adapt the experts’ knowledge through optimization and learning [1,
2]. These properties are crucial in several applications. Therefore, FCMs need
further enhancement, stronger mathematical justification, and improvement of
their operation. This can be attained through the development of new learning
algorithms that alleviate the deficiencies and improve the performance of FCMs.

In this paper, an approach for FCMs learning, based on a swarm intelli-
gence algorithm, is presented. In particular, the Particle Swarm Optimization
(PSO) method is applied to determine an appropriate configuration of the FCM’s
weights, through the minimization of a properly defined objective function [3].
The technique is applied on a process control problem, with promising results.
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The paper is organized as follows: the PSO algorithm is briefly presented in
Section 2, while the basic principles of FCMs as well as the learning procedure
are described in Section 3. In Section 4 the process control problem is described
and the experimental results are reported and discussed. The paper concludes
in Section 5.

2 The Particle Swarm Optimization Algorithm

Particle Swarm Optimization (PSO) is a population–based stochastic optimiza-
tion algorithm. It belongs to the class of swarm intelligence algorithms, which
are inspired from and based on the social dynamics and emergent behavior that
arise in socially organized colonies [4,5]. In the context of PSO, the population
is called a swarm and the individuals (search points) are called particles.

Assume a D–dimensional search space, S ⊂ R
D, and a swarm consisting

of N particles. The i–th particle is in effect a D–dimensional vector, Xi =
(xi1, xi2, . . . , xiD)� ∈ S. The velocity of this particle is also a D–dimensional
vector, Vi = (vi1, vi2, . . . , viD)� ∈ S. The best previous position encountered by
the i–th particle is a point in S, denoted by Pi = (pi1, pi2, . . . , piD)�. Assume
gi to be the index of the particle that attained either the best position of the
whole swarm (global version) or the best position in the neighborhood of the i–th
particle (local version). Then, the swarm is manipulated by the equations [6]:

Vi(t + 1) = χ
[
Vi(t) + c1 r1

(
Pi(t) − Xi(t)

)
+ c2 r2

(
Pgi(t) − Xi(t)

)]
, (1)

Xi(t + 1) = Xi(t) + Vi(t + 1), (2)

where i = 1, . . . , N ; χ is a parameter called constriction factor ; c1 and c2 are two
parameters called cognitive and social parameters respectively; and r1, r2, are
random numbers uniformly distributed within [0, 1]. The value of the constriction
factor can be derived analytically [6]. The initialization of the swarm and the
velocities, is usually performed randomly and uniformly in the search space.

3 Fuzzy Cognitive Maps Learning

FCMs combine properties of fuzzy logic and neural networks. An FCM models
the behavior of a system by using concepts, Ci, i = 1, ..., N , that represent the
states, variables or characteristics of the system. The system is then represented
by a fuzzy signed directed graph with feedback, which contains nodes–concepts
and weighted edges that connect the nodes and represent the cause and effect
relations among them. The values, Ai, of the concepts lie within [0, 1] and they
are susceptible to change over time. The weights, Wij , of the edges assume va-
lues in [−1, 1], and represent the extent of the impact of the interconnected
concepts on each other. The design of an FCM is a process that heavily relies
on the input from a group of experts [7] and results in an initial weight matrix,
W initial = [Wij ], with Wii = 0, i, j = 1, . . . , N . After the determination of its
structure, the FCM is let to converge to a steady state by applying the rule,
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Ai(t + 1) = f
(
Ai(t) +

∑n
j=1
j �=i

WjiAj(t)
)
, with arbitrary initial values of Ai [2],

where t stands for the time counter. The function f is the threshold function,
f(x) = 1/(1 + e−λx), where λ > 0 is a parameter that determines its steepness.
In the present study the value of λ was set to 1. A steady state of the FCM
is characterized by concept values that are not further modified through the
application of the aforementioned rule. After this stage, the FCM can simulate
the system accurately. The heavy dependence on the experts’ opinion regarding
the FCM’s design; the convergence to undesired steady states starting from the
experts recommendations; as well as the need for specific initial values of the
concepts, are significant weaknesses of FCMs, which can be addressed through
learning procedures. Up–to–date, a few learning algorithms have been propo-
sed [8,9], and they are mostly based on ideas coming from the field of neural
network training. Recently, a new technique for FCMs learning, which is based
on the minimization of a properly defined objective function using the Particle
Swarm Optimization algorithm, has been developed [3]. For completeness pur-
poses, this technique is outlined in the rest of this section.

The main goal of learning in FCMs is to determine the values of the weights
of the FCM that produce a desired behavior of the system. The desired behavior
of the system is characterized by values of the output concepts that lie within
prespecified bounds, determined by the experts. These bounds are in general
problem dependent. Let Cout1 , . . . , Coutm

, m ∈ {1, 2, . . . , N}, be the output
concepts of the FCM, while the remaining concepts are considered input or
interior concepts. The user is interested in restricting the values of these output
concepts in strict bounds, Amin

outi
� Aouti

� Amax
outi

, i = 1, . . . , m, which are crucial
for the proper operation of the modeled system. Thus, the main goal is to detect
a weight matrix, W = [Wij ], i, j = 1, . . . , N , that leads the FCM to a steady
state at which, the output concepts lie in their corresponding bounds, while
the weights retain their physical meaning. The latter is attained by imposing
constraints on the potential values assumed by weights. To do this, the following
objective function is considered [3]:

F (W ) =
m∑

i=1

H
(
Qmin

outi

) ∣∣Qmin
outi

∣∣ +
m∑

i=1

H
(
Qmax

outi

) ∣∣Qmax
outi

∣∣ , (3)

where Qmin
outi

= Amin
outi

− Aouti ; Qmax
outi

= Aouti − Amax
outi

; H is the well–known Hea-
viside function, i.e. H(x) = 0, if x < 0, and H(x) = 1 otherwise; and Aouti

,
i = 1, . . . , m, are the steady state values of the output concepts that are obtai-
ned using the weight matrix W . Obviously, the global minimizers of the objec-
tive function F are weight matrices that lead the FCM to a desired steady state.
An FCM with N fully interconnected concepts, corresponds to an N(N − 1)–
dimensional minimization problem [3].

The application of PSO for the minimization of the objective function F ,
starts with an initialization phase, where a swarm of weight matrices is generated
randomly, and it is evaluated using F . Then, (1) and (2) are used to evolve the
swarm. When a weight configuration that globally minimizes F is reached, the
algorithm stops. There is, in general, a plethora of weight matrices for which the
FCM converges to the desired regions of the output concepts. PSO is a stochastic
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Fig. 1. The process control problem (left) and the corresponding FCM (right).

algorithm, and, thus, it is quite natural to obtain such suboptimal matrices that
differ in subsequent experiments. The approach has proved to be very efficient
in practice [3]. In the following section, its operation on an industrial process
control problem, is discussed.

4 An Application to a Process Control Problem

The learning algorithm previously described, is applied on a complex industrial
process control problem [7]. This problem consists of two tanks, three valves,
one heating element and two thermometers for each tank, as depicted in Fig. 1.
Each tank has an inlet valve and an outlet valve. The outlet valve of the first
tank is the inlet valve of the second. The objective of the control system is to
keep the height as well as the temperature of the liquid in both tanks, within
prespecified bounds. The temperature, T 1, of the liquid in tank 1, is regulated
by a heating element. The temperature, T 2, of the liquid in tank 2, is measured
using a thermometer; if T 2 is decreased, then valve V 2 opens, and hot liquid
from tank 1 is pured into tank 2. Thus, the main objective is to ensure that the
relations H1

min � H1 � H1
max, T 1

min � T 1 � T 1
max, H2

min � H2 � H2
max, T 2

min �
T 2 � T 2

max, hold, where H1 and H2 denote the height of the liquid in tank 1
and tank 2, respectively. An FCM that models this system has been developed
in [7] and depicted in Fig. 1. The output concepts are C1, C2, C6 and C7.
The sign and the weight of each interconnection have been determined by three
experts [7]. All the experts agreed regarding the direction of the interconnections
among the concepts, and they determined the overall linguistic variable and the
corresponding fuzzy set for each weight. The final ranges for the weights, as
implied by the fuzzy regions, are: 0.00 � W13 � 0.50, 0.00 � W14 � 0.75,
0.00 � W24 � 0.90, 0.00 � W25 � 1.00, 0.50 � W31 � 1.00, −1.0 � W41 �
−0.25, 0.25 � W42 � 1.00, −0.50 � W47 � 0.50, −0.75 � W52 � 0.75, 0.00 �
W63 � 0.75, 0.25 � W68 � 0.75, 0.00 � W74 � 0.60, 0.00 � W86 � 0.90,
and the initial weights, derived through the CoA defuzzification method, are
W initial = [0.21, 0.38, 0.70, 0.6, 0.76,−0.80, 0.80, 0.09,−0.42, 0.4, 0.53, 0.30, 0.60].

Two different scenarios have been considered to investigate the performance
of our approach on the process control problem. For each scenario, 100 indepen-
dent experiments have been performed using the global variant of a constriction
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Fig. 2. Boxplots for the first scenario.

factor PSO. The swarm size was set to 5. The constriction factor as well as
the cognitive and the social parameter have been set to their default values,
χ = 0.729, c1 = c2 = 2.05 [6].

The first scenario considers the constrained weights, and the following de-
sired values for the four output concepts: 0.5 � C1 � 0.7, 0.7 � C2 � 0.8,
0.6 � C6 � 0.7, 0.6 � C7 � 0.8. The convergence regions of the concepts and
weights are depicted in the boxplots of Fig. 2. A suboptimal weight vector is
W = [0.01, 0.36, 0.41, 0.82, 0.50,−0.60, 0.29, 0.39, 0.42, 0.22, 0.36, 0.11, 0.18], and
the corresponding values of the output concepts are C1 = 0.62, C2 = 0.79,
C6 = 0.69, C7 = 0.74. Comparing the derived convergence regions of the weights
with the bounds provided by the experts, it can be observed that three weights,
namely W47, W52, and W86 take values in ranges significantly smaller than their
bounds. This can serve as an indication that the experts determined relatively
wide initial bounds. The values of the remaining weights lie in their bounding
regions. The mean number of required function evaluations was 32.85.

In the second scenario, the desired values for the output concepts are diffe-
rent: 0.5 � C1 � 0.7, 0.7 � C2 � 0.8, 0.73 � C6 � 0.81, 0.65 � C7 � 0.75. The
convergence regions of the concepts and weights are depicted in the boxplots of
Fig. 3. A suboptimal weight vector is W = [0.21, 0.49, 0.01, 0.04, 0.51,−0.89, 0.61,
0.09,−0.40, 0.09, 0.29, 0.01, 0.84], and the corresponding values of the output con-
cepts are C1 = 0.56, C2 = 0.71, C6 = 0.80, C7 = 0.67. Again, the weights W47,
W52, and W86 assume values in ranges significantly smaller than their bounds,
while the values of the remaining weights lie in their bounding regions. The mean
number of required function evaluations was 15.35.

It is clear that the learning algorithm is capable of providing proper weight
matrices for the FCM, efficiently and effectively. Moreover, the statistical analy-
sis through the boxplots provides indications regarding the quality of the weights’
bounds determined by the experts, which can be used in the future as a mecha-
nism for the evaluation of the experts by taking into consideration the deviation
of their suggestions from the obtained values.
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Fig. 3. Boxplots for the second scenario.

5 Conclusions

A methodology for determining the cause–effect relationships (weights) among
the concepts of Fuzzy Cognitive Maps, has been presented. This approach is
based on the minimization of a properly defined objective function through the
Particle Swarm Optimization algorithm. A complex process control problem has
been used to illustrate the algorithm. The results are very promising, verifying
the effectiveness of the learning procedure. Moreover, the physical meaning of
the obtained results is retained. This approach can provide a robust solution
in the case of divergent opinions of the experts, and it will be considered, in a
future work, as means for the evaluation of the experts.
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