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Abstract. We propose an alternative algorithm for solving continuous
review inventory model problems for deteriorating items over a finite
horizon. Our interest focuses on the case of time–dependent demand
and backlogging rates, limited or infinite warehouse capacity and taking
into account the time value of money. The algorithm is based on Parti-
cle Swarm Optimization and it is capable of computing the number of
replenishment cycles as well as the corresponding shortage and replen-
ishment instances concurrently, thereby alleviating the heavy computa-
tional burden posed by the analytical solution of the problem through
the Kuhn–Tucker approach. The proposed technique does not require
any gradient information but cost function values solely, while a penalty
function is employed to address the cases of limited warehouse capacity.
Experiments are conducted on models proposed in the relative litera-
ture, justifying the usefulness of the algorithm.

1 Introduction

Inventory maintenance of deteriorating items is a major concern in the supply
chain of business organizations, since many products undergo decay or deteri-
oration over time. Deterioration and demand rates play a crucial role in such
problems. For this purpose, relative models have been proposed in the literature
for different deterioration rates [1,2,3]. Also, a constant demand rate is usually
valid in the mature stage of a product’s life cycle, while it can be linearly ap-
proximated in the growth and/or end stage of the life cycle. Such models with
linearly time varying demand were studied initially in [4, 5], while most recent
trends are reported in [6, 7].

Another important issue of inventory systems is the management of unsa-
tisfied demand. Often, complete backlogging of unsatisfied demand is assumed.
However, in practice, there are customers who are willing to wait and receive
their orders at the end of shortage period, while others are not. To this ex-
tent, considerable attention has been paid in the last few years to inventory
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models with partial backlogging, where the backlogging rate can be modeled
taking into account the behavior of customers [8, 9, 10]. In addition, the ef-
fects of inflation and time value of money are vital in practical environments
especially in developing countries. Recently, Chern et al. [11] studied an in-
ventory model for deteriorating items with time varying demand and partial
backlogging, taking into account the time value of money. This model can be
considered as a generalization of older models. Basic assumption of the model
is the unlimited storage capacity. However, this assumption does not often hold
in practice.

Particle Swarm Optimization (PSO) was introduced in 1995 as a stochas-
tic population–based algorithm for numerical optimization by Eberhart and
Kennedy [12, 13]. It belongs to the class of swarm intelligence algorithms,
whose dynamics are based on principles that govern socially organized groups
of individuals [14]. Up–to–date, PSO has received a lot of attention from re-
searchers due to its efficiency in solving different problems in science and engi-
neering [15, 14, 16, 17].

This paper is devoted to the investigation of the efficiency of PSO on solving
an extended version of the model of Chern et al. [11], where limited storage is
also considered. The detection of replenishment cycles, replenishment instances
and replenishment orders is required, while warehouse capacity constraints can
be present. The underlying optimization problem is mixed–integer with the
solutions having variable length as well as posing constraints on the magnitude
of their components, since the ordering of time instances must be preserved. For
this purpose, hard bounding constraints are posed on the search points, while a
penalty function is employed to tackle capacity constraints. The workings of the
proposed approach are illustrated on three test problems considered in [11, 9].

The rest of the paper is organized as follows: Section 2 contains the necessary
background information on the considered inventory models and PSO. Section 3
describes the proposed approach, while experimental results are reported in
Section 4. The paper concludes in Section 5.

2 Background Information

In the following subsections we describe the basic concepts of the continuous
review inventory model proposed in [11] as well as the PSO algorithm.

2.1 The Considered Review Inventory Model

The model under investigation is an extension of the model of Chern et al. [11],
assuming that the storage can also have limited capacity. The selection of this
model was based on its generality due to the time varying demand, deterioration
and backlogging rates. Thus, it can be considered to include different previously
proposed models as special cases. The assumptions under which the model is
developed are:
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Table 1. Notation used for the parameters of the model

Param. Description

n Number of replenishment cycles during the planning horizon.

si Time at which shortage starts during the i–th cycle, i = 1, 2, . . . , n.

ti Time at which the i–th replenishment is made, i = 1, 2, . . . , n.

r Discount rate.

i1 Internal inflation rate, which is varied by the company operation status.

i2 External inflation rate, which is varied by the social economical situation.

r1 r − i1, discount rate minus the internal inflation rate.

r2 r − i2, discount rate minus the external inflation rate.

c0 Internal fixed purchasing cost per order.

cp External variable purchasing cost per unit.

ch1 Internal inventory holding cost per unit and per unit of time.

ch2 External inventory holding cost per unit and per unit of time.

cb1 Internal backlogging cost per unit and per unit of time.

cb2 External backlogging cost per unit and per unit of time.

cl1 Internal cost of lost sales per unit and per unit of time.

cl2 External cost of lost sales per unit and per unit of time.

W Storage area or volume.

1. The planning horizon is finite and equal to H time units. The initial and
final inventory levels during the planning horizon are both set to zero.

2. Replenishment is instantaneous (replenishment rate is infinite).
3. The lead–time is zero.
4. The on hand inventory deteriorates at time varying deterioration rate θ(t).
5. The demand rate at time t ∈ [0, H ], is a continuous function f(t).
6. The system allows for shortages in all cycles, and each cycle starts with

shortages.
7. Shortages are backlogged at a rate β(x), which is a non–increasing function

of the waiting time x up to the next replenishment, with 0 � β(x) � 1 and
β(0) = 1.

The notation that will be used hereafter is reported in Table 1, along with the
descriptions of the parameters. Let

δ(t) =
∫ t

0
θ(u)du,

then the total cost of the inventory system during the planning horizon H , as
defined by Chern et al. [11], is:
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TC(n, si, ti) =
n∑

i=1

c0e
−r1ti

+
n∑

i=1

cpe
−r2ti

(∫ ti

si−1

β (ti − t) f(t)dt +
∫ si

ti

eδ(t)−δ(ti)f(t)dt

)

+
n∑

i=1

2∑
j=1

chj

∫ si

ti

e−rjt

∫ si

t

eδ(u)−δ(t)f(u)dudt

+
n∑

i=1

2∑
j=1

cbj

rj

∫ ti

si−1

(
e−rjt − e−rjti

)
β(ti − t)f(t)dt

+
n∑

i=1

2∑
j=1

clj

∫ ti

si−1

e−rjt [1 − β (ti − t)] f(t)dt, (1)

subject to s0 = 0, si−1 < ti � si, and sn = H . Considering additionally the
capacity constraints, we end up with the following constrained, mixed–integer
minimization problem:

min
n,ti,si

TC(n, ti, si)

s.t.
∫ si

ti

eδ(u)−δ(ti)f(u)du � W, (2)

s0 = 0, sn = H, si−1 < ti � si, i = 1, 2, . . . , n.

Ignoring the constraints, si−1 < ti � si, i = 1, 2, . . . , n, and for given n, the
application of the classical Kuhn–Tucker approach can find the optimal solution
after solving 2n nonlinear systems of equations with 2n up to 3n variables [11,9].
Clearly, the computational cost for solving the problem for unknown n using
the Kuhn–Tucker approach is heavy. For this purpose, we propose a technique
for concurrent computation of n, ti, and si (which are used for determining the
size of the replenishment order). The approach is based on the application of
the PSO algorithm, which is described in the next section.

2.2 Particle Swarm Optimization

PSO employs a population of search points that probe the search space simulta-
neously. The population is called a swarm, while the search points are called the
particles. The particles are initialized randomly in the search space and move
with an adaptive velocity within it. Also, each particle has a memory where it
stores its best experience during the search, i.e., the best position it has ever
visited in the search space. An iteration of the algorithm corresponds to an up-
date of the positions of all particles. The update for each particle is performed
by computing the new velocity of the particle, taking into account both its own
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experience as well as the experience of other particles. These particles are said
to constitute its neighborhood.

Let S ⊂ R
D be a D–dimensional search space and F : S → R be the objective

function (without loss of generality only the minimization case is considered).
A swarm is a set of N particles, S = {x1, x2, . . . , xN}, each of which, is a D–
dimensional search point, xi = (xi1, xi2 . . . , xiD)� ∈ S, i = 1, . . . , N , and it has
an adaptive velocity, vi = (vi1, vi2, . . . , viD)�. Also, each particle xi remembers
the best position, bi = (bi1, bi2, . . . , biD)� ∈ S, it has ever visited.

A neighborhood, NBi, is defined for each particle xi, i = 1, 2, . . . , N . There
are several different neighborhood schemes (also called topologies) presented in
the literature [18, 19]. Most of them are defined based on the indices of the
particles rather than their actual positions in S. The most common scheme is
the ring topology, where the particles are assumed to be organized on a ring,
communicating with their immediate neighbors. Under this topology, a neigh-
borhood of radius q of xi is defined as the set NBq

i = {xi−q , . . . , xi, . . . , xi+q},
where x1 follows immediately after xN . We denote with gi the index of the best
particle in NBi, i.e., the particle that has visited the best position in S in terms
of its function value, F (bgi) � F (bj), for all j such that xj ∈ NBi.

Let t to be the iteration counter. Then, the swarm is updated using the
equations [20],

vij(t + 1) = χ

[
vij(t) + c1R1

(
bij(t) − xij(t)

)
+ c2R2

(
bgi,j(t) − xij(t)

)]
, (3)

xij(t + 1) = xij(t) + vij(t + 1), (4)

where i = 1, 2, . . . , N , j = 1, 2, . . . , D. The parameter χ is called the constriction
coefficient and it is used to constrain the magnitude of the velocities during the
search. The positive constants c1 and c2 are referred to as the cognitive and
social parameter, respectively; while R1, R2 are random variables uniformly
distributed in [0, 1]. Default values for χ, c1 and c2 are determined in the the-
oretical analysis of Clerc and Kennedy [20]. The best positions of the particles
are updated at each iteration according to the relation:

bi(t + 1) =
{

xi(t + 1), if F (xi(t + 1)) < F (bi(t)),
bi(t), otherwise, i = 1, 2, . . . , N.

The particles are usually constrained to move strictly in the search space, posing
explicit bounds on each component of the particles.

3 The Proposed Approach

In the proposed approach, PSO is used to determine both the number of replen-
ishment cycles, n, as well as the corresponding solution, (s0, t1, s1, . . . , tn, sn),
concurrently. Since the first and the last component of a possible solution vec-
tor are known a priori for a specific problem instance (s0 = 0, sn = H), it
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is sufficient to determine only the remaining (2n − 1) solution components, t1,
s1, . . . , tn, which will be called the time components hereafter. However, in our
approach, n is also a variable, rising questions regarding the encoding of the vari-
able length PSO particles. For this purpose, we consider a fixed, user–defined
maximum number of cycles, nmax � n, which is used to fixate the particles’
dimension to D = 2nmax. Then, the i–th particle of the swarm is defined as a
D–dimensional vector of the form

xi = (xi1, xi2, . . . , xiD) = (n, t1, s1, . . . , tn, sn, . . . , tnmax) ,

in order to facilitate arithmetic operations, while only the first 2n components
that correspond to n, t1, s1, . . . , tn, are used for the evaluation of x with
the cost function TC(x), i.e., TC(x) = TC(n, s0, t1, s1, . . . , tn, sn). The rest of
the components are simply ignored. Alternatively, one could incorporate spe-
cial operators for updating particles of variable length. Such operators have
been introduced in the literature for PSO [21]. However, their use in our case
requires special handling regarding the ordering of the particle’s components,
due to constrictions posed by the problem on the time components. Therefore,
the simpler solution of assuming a reasonable maximum number of cycles and
defining particles of fixed and equal dimensionality, was adopted.

The values of n must be integers and lie within the range [1, nmax]. The
restriction of the corresponding particle component, xi1, to integer values would
require the use of special operators for the particle’s update. In order to retain
the simplicity and straightforward applicability of the algorithm, we allowed xi1
to assume real values in the range [0.6, nmax] in the particle’s update procedure,
while, for the function evaluation, we round its value to the nearest integer.
Such rounding approaches have been shown to work efficiently also in different
problems with PSO [22]. The initialization of xi1 for each particle is performed
randomly and uniformly within [0.6, nmax].

The rest of the components of the particle (i.e., the time components) must
lie within the range [0, H ], preserving the ordering t1 � s1 � · · · � tnmax . For
this purpose, the j–th component, xij , is constrained within the range

xi,j−1 � xij � xi,j+1, j = 2, 3, . . . , D − 1, (5)

in the particle update procedure at each iteration. Clearly, this restriction fosters
the danger of biasing the components of the particles towards H , if one of the
preceding time components assumes a large value close to H . If this effect takes
place in the initialization phase, then it can be detrimental for the algorithm’s
performance, since it will inhibit the initialization of particles in specific parts
of the search space. In order to avoid such an effect, we initialize each time
component of xi randomly in equidistant intervals within the range [0, H ], i.e.,

xinitial
ij = (j − 2 + rand)Δ, j = 2, 3, . . . , D,

where Δ = H/(D − 1) and “rand” is a random variable uniformly distributed
in [0, 1].
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In the cases where constraints on the capacity of the warehouse were consid-
ered, the following penalty function was used:

TCpen(n, si, ti) = TC(n, si, ti) +
K∑

k=1

TC(n, si, ti)
n

, (6)

where K is the number of violated constraints in Eq. (2), 0 � K � n. Thus,
for each violated constraint, a fixed portion of the cost function is added to the
actual cost function value.

4 Experimental Analysis

The proposed approach was applied on the following test problems, denoted as
TP1, TP2, and TP3, respectively:

Test Problem 1 [9]. This problem is based on a simplified version of the model
described by Eq. (1), with demand rate f(t) = 20+2t, β(x) = e−αx, r1 = r2 = 0,
c0 = 100, cp = 0.2, cb2 = 1.5, cl2 = 0.5, ch2 = 55, ch1 = cb1 = cl1 = 0
and θ(t) = 0.01. The problem was considered for three different levels of the
parameter α, namely α = 0.08, 0.05, and 0.02.

Test Problem 2 [11]. In this problem, the shortages are completely back-
logged, i.e., β(x) = 1 for all t, the demand rate is f(t) = 200 + 50t, and the
parameters assume the values: H = 10, c0 = 80, ch1 = 0.2, ch2 = 0.4, cb1 = 0.5,
cb2 = 0.4, cp = 9, r = 0.2, i1 = 0.08, i2 = 0.09, and θ(t) = 0.01.

Test Problem 3 [11]. In this problem, the shortages are also completely
backlogged, i.e., β(x) = 1 for all t, the demand rate is f(t) = 200 + 50t − 3t2,
and the parameters assume the values: H = 10, c0 = 80, ch1 = 0.2, ch2 = 0.4,
cb1 = 0.8, cb2 = 0.6, cp = 15, r = 0.2, i1 = 0.08, i2 = 0.1, and θ(t) = 0.01.

Regarding the parameters of PSO, the typical values χ = 0.729, c1 = c2 = 2.05,
derived from the theoretical analysis of Clerc and Kennedy [20] were used. The
neighborhood radius was equal to 1 for all particles, while the swarm size was set
to N = 100 in all experiments, and the algorithm was terminated after a maxi-
mum number of 15000 iterations, in all test problems. The maximum number of
replenishments, which is used for the determination of the particles’ dimension,
was equal to nmax = 20 for all test problems, resulting in 40–dimensional opti-
mization problems (recall that D = 2nmax = 40). The maximum inventory size
in the constrained cases ofTP1was equal toW = 90,while forTP2 and TP3 itwas
W = 300. For each test problem and case, 50 independent experiments were per-
formed to derive statistics regarding the performance of the proposed approach.

The first component, xi1, of the particle, which corresponds to n (it is not a
time component), is initialized randomly and uniformly within [0.6, nmax]. The
obtained results are reported in Table 2. More specifically, the first column of the
table specifies the test problem, while the second and third columns specify the
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Table 2. The obtained results in terms of the required number of iterations

Problem α W n∗ TC∗ Suc. Mean St.D. Min Max

1 0.08 ∞ 3 685.888 50/50 223.96 66.47 106 421

0.08 90 3 688.354 50/50 2985.30 2364.64 444 11568

0.05 ∞ 3 687.686 50/50 205.84 44.36 98 305

0.05 90 3 690.702 50/50 1676.90 971.32 466 5130

0.02 ∞ 3 689.405 50/50 219.66 58.69 111 432

0.02 90 3 693.010 50/50 988.74 557.28 339 2826

2 ∞ 1 21078.04 50/50 8.20 1.88 5 13

300 1 21078.04 50/50 46.48 28.01 10 133

3 ∞ 1 29990.68 50/50 7.64 1.86 5 13

300 1 29990.68 50/50 28.30 19.29 9 86

corresponding value of the parameter α (applicable only to TP1) and the value
of W . Infinite warehouse capacity in the unconstrained cases is denoted as “∞”.
In the rest of the columns, the detected optimal number of replenishment cycles,
n∗, is reported per case, along with the corresponding value, TC∗, of the cost
function. Also, the number of experiments where the algorithm was successful,
i.e., it detected the optimal solution, is reported, along with the mean, standard
deviation, minimum and maximum number of iterations required to obtain the
solution. Since PSO is a stochastic algorithm, the obtained solution at each
experiment for the same problem and case is expected to vary slightly. One of
the obtained optimal solutions for each case is reported in Table 3.

Table 3. The obtained solutions rounded up to 6 decimal digits

Problem α W n∗ s0 t1 s1 t2 s2 t3 s3

1 0.08 ∞ 3 0.0 1.518444 4.546430 5.776002 8.463058 9.536687 12.0

0.08 90 3 0.0 1.644925 4.854017 6.164020 8.711135 9.873837 12.0

0.05 ∞ 3 0.0 1.470722 4.529375 5.732727 8.448895 9.506381 12.0

0.05 90 3 0.0 1.609384 4.881638 6.175431 8.721005 9.873838 12.0

0.02 ∞ 3 0.0 1.434863 4.523818 5.702551 8.447381 9.487877 12.0

0.02 90 3 0.0 1.575821 4.907751 6.179812 8.724783 9.873839 12.0

2 ∞ 1 0.0 10.0 10.0

300 1 0.0 10.0 10.0

3 ∞ 1 0.0 10.0 10.0

300 1 0.0 10.0 10.0
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It is clear that the imposition of constraints in TP1 increases its difficulty
significantly, as it is revealed by the increased mean number of iterations re-
quired by the algorithm. Nevertheless the algorithm was successful in all cases,
detecting both n∗ and the corresponding solution without any user intervention.
The hard constraints posed on the particles do not prevent PSO from detecting
the optimal value, although the bounds change continuously for each particle
and iteration, in order to preserve the ordering of the time components of the
particles. The penalty function defined in Eq. (6) was adequate to prevent PSO
from converging to unfeasible solutions in the cases with constrained warehouse
capacity, without any assumptions needed regarding the feasibility of the initial
population. Thus, all solutions reported in Table 3 were feasible.

The same observations can be made also for TP2 and TP3. However, in these
cases, the reported solutions coincide for the unconstrained and constrained
warehouse capacity, since the optimal solution corresponds to a single cycle,
and time components lie exactly on the bounds of the time horizon. Overall,
the considered test problems were addressed efficiently, rendering the proposed
approach a useful alternative for solving continuous review inventory models of
the considered type.

5 Conclusions

A major concept in supply chain is the maintenance of inventories of deteriorat-
ing items. Such problems are usually addressed through analytical approaches,
based on the theory of Kuhn–Tucker. However, the corresponding computa-
tional cost is high and the problems reported in the literature usually do not
take into account the limited warehouse capacity.

We proposed an alternative approach for solving such problems through PSO.
The proposed approach computes the number of replenishment cycles as well as
the corresponding shortage and replenishment instances, concurrently, without
the need of gradient information. Experiments conducted on an extension of
a recently proposed model indicate that the proposed approach can tackle the
problem efficiently. Future work will consider further test problems as well as the
development of specialized operators that can incorporate model information in
the PSO update schemes.
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