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Abstract. Swarm Intelligence algorithms have proved to be very ef-
fective in solving problems on many aspects of Artificial Intelligence.
This paper constitutes a first study of the recently proposed Unified
Particle Swarm Optimization algorithm on scheduling problems. More
specifically, the Single Machine Total Weighted Tardiness problem is
considered, and tackled through a scheme that combines Unified Particle
Swarm Optimization and the Smallest Position Value technique for the
derivation of job sequences from real–valued particles. Experiments on
well–known benchmark problems are conducted with promising results,
which are reported and discussed.

1 Introduction

The allocation of resources to tasks is a problem that arises very often in real–
world applications. In general, problems of this type are characterized as schedul-
ing problems and they are NP–hard [1, 2, 3]. The main goal in scheduling prob-
lems is the assignment of jobs (tasks) to a single or many machines such that
some criteria that involve the minimization of a single or many objective func-
tions are met.

The Single Machine Total Weighted Tardiness (SMTWT) problem is an NP–
hard scheduling problem [1]. In SMTWT, a number, n, of jobs have to be sequen-
tially processed on a single machine. Each job, j = 1, 2, . . . , n, has a processing
time, pj, a due date, dj , by which it should be completed, and a weight, wj . All
jobs are assumed to be available for processing at time zero. If Cj denotes the
completion time of job j in a job sequence, then the tardiness of job j is defined
as:

Tj = max {0, Cj − dj} .

The main goal in SMTWT problems is to find a job sequence that minimizes
the sum of the weighted tardiness:

T =
n∑

j=1

wjTj. (1)
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Instances of the SMTWT problem with large number of jobs cannot be solved
to optimality with traditional branch–and–bound algorithms [4]. To this end,
different heuristics such as Earliest Due Date and Apparent Urgency, as well
as optimization algorithms such as Simulated Annealing, Tabu Search, Genetic
Algorithms and Ant Colony Optimization have been successfully applied for
tackling the SMTWT problem [5, 6, 7].

Recently, Particle Swarm Optimization (PSO) was applied on task assignment
problems [8], as well as on the SMTWT problem [9] with promising results. In the
latter case, the Smallest Position Value (SPV) representation technique was de-
veloped to transform a real–valued point to a sequence of jobs. Also, the Variable
Neighborhood Search (VNS) technique [10] was employed and proved to enhance
significantly the performance of PSO [9]. Unified Particle Swarm Optimization
(UPSO) was recently introduced as a unified PSO scheme that combines the ex-
ploration and exploitation properties of different PSO variants [11]. Preliminary
results on different problems indicate the superiority of UPSO against standard
PSO variants [12, 13, 14, 15].

This paper constitutes a first investigation of UPSO on the SMTWT prob-
lem. The SPV representation scheme is adopted in our study for the derivation
of job sequences from real–valued vectors. Our primary intention in this prelim-
inary study was to assess the performance of UPSO itself and compare it with
standard PSO schemes. Therefore, in order to avoid possible affection of the
algorithms’ dynamic, techniques like VNS that proved to significantly enhance
the performance of the algorithms are not considered.

The rest of the paper is organized as follows. PSO and UPSO are briefly
described in Section 2 along with the SPV representation scheme. Experimental
results are reported and discussed in Section 3, and the paper concludes in
Section 4.

2 Background Material

The emergent (collective) behaviors observed in natural systems have attracted
a lot of attention the late years by computer scientists. Swarms of insects and
animal flocks that consist of members with very limited space of actions can
produce more complex behaviors as a collective, providing inspiration for the
development of algorithms that can tackle NP-hard problems effectively. Swarm
Intelligence is a subject of Artificial Intelligence that investigates the collective
behavior in decentralized, self–organized systems, and promotes the development
of population–based, adaptive optimization algorithms that are characterized by
stochasticity, noise–tolerance and minimum requirements regarding the form of
the objective function (differentiability, continuity etc.) [16].

PSO is a Swarm Intelligence algorithm introduced in 1995 by Eberhart and
Kennedy [17]. The inspiration behind its development lies on the emergent behav-
ior and information exchange in socially organized colonies of simple agents [16].
PSO was primarily used in numerical optimization tasks. However, a plethora
of applications have been developed and reported in the relative literature
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up–to–date [16, 18, 19, 20]. For completeness purposes, the following subsections
are devoted to the description of PSO, UPSO and SPV.

2.1 Particle Swarm Optimization

PSO is a population–based algorithm. It employs a population, called a swarm,
of search points, called particles, to probe the search space. Assuming an n–
dimensional optimization problem,

min
x∈S

f(x), S ⊂ IRn,

then the particles are n–dimensional vectors,

xi = (xi1, xi2, . . . , xin)� , i = 1, . . . , N,

that constitute a swarm, S = {x1, . . . , xN}. The numbering of particles in S is
arbitrary. Each particle moves in the search space with an adaptable velocity,

vi = (vi1, vi2, . . . , vin)� ,

and stores the best position,

pi = (pi1, pi2, . . . , pin)� ∈ S,

it has ever visited, i.e., the position with the lowest function value so far.
The computational strength of Swarm Intelligence algorithms originates from

the interaction of agents that constitute the swarm, either with their environment
(through stigmergy) or directly among them through information exchange. This
attribute gives rise to the concept of neighborhood, which determines the imme-
diate “social” environment of the agent. In PSO’s framework, each particle is
considered to have a neighborhood consisting of a number of other particles.
These particles influence its movement with their best experience (i.e., the best
positions they have discovered). However, the neighborhood is not defined di-
rectly in the search space by using a distance measure among particles, but rather
in the space of the particles’ indices, in order to promote the algorithm’s ability
for global search and avoid the computational burden of computing distances
among all particles at each iteration of the algorithm.

Different neighborhood topologies have been proposed and applied in the liter-
ature with promising results [21,22,23]. The most common neighborhood topol-
ogy is the ring topology, where the immediate neighbors of the particle xi are
the particles xi−1 and xi+1, while x1 is considered to be the particle that follows
immediately after xN . Thus, a neighborhood of radius ρ of xi consists of the
particles xi−ρ, . . . , xi, . . . , xi+ρ. The ring topology is the neighborhood scheme
that we adopted in our study. There are two main variants of PSO with respect
to the size of neighborhood. In the global variant, the whole swarm is considered
as the neighborhood of each particle, while, in the local variant, strictly smaller
neighborhoods are used.
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Let gi be the index of the best particle in the neighborhood of xi, i.e., the
index of the particle that attained the best position among all the particles of the
neighborhood. Then, the position of xi is updated according to the equations [24]

v
(k+1)
i = χ

[
v
(k)
i + ϕ1

(
p
(k)
i − x

(k)
i

)
+ ϕ2

(
p(k)

gi
− x

(k)
i

)]
, (2)

x
(k+1)
i = x

(k)
i + v

(k+1)
i , (3)

where i = 1, . . . , N ; k is the iteration counter; χ is a parameter called constric-
tion coefficient that controls the velocity’s magnitude; ϕ1 = c1r1 and ϕ2 = c2r2,
where c1 and c2 are positive acceleration parameters, called cognitive and social
parameter, respectively, and r1, r2 are random vectors that consist of random
values uniformly distributed in [0, 1]. All vector operations in Eqs. (2) and (3)
are performed componentwise. A stability analysis of PSO, as well as recommen-
dations regarding the selection of its parameters are provided in [24, 25].

The performance of an optimization algorithm depends heavily on the balance
between its exploration and exploitation ability. In the global variant of PSO,
all particles are attracted by the same best position, converging faster towards
specific locations in the search space. Thus, it has better exploitation abilities,
in contrast to the local variant where the information of the best position of
each neighborhood is communicated slowly to the other particles of the swarm
through their neighbors in the ring topology, thereby promoting exploration.

2.2 Unified Particle Swarm Optimization

UPSO has been recently proposed as a unified scheme that harnesses the local
and global PSO variants, combining their exploration and exploitation capabil-
ities [12, 13, 14, 15]. Let G(k+1)

i denote the velocity update of the particle xi in
the global PSO variant and let L(k+1)

i denote the corresponding velocity update
for the local variant. Then, according to Eq. (2), we obtain:
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where k denotes the iteration number; g is the index of the best particle of the
whole swarm (global variant); and gi is the index of the best particle in the
neighborhood of xi (local variant). The search directions G(k+1)

i and L(k+1)
i are

combined in a single equation, resulting in the main UPSO scheme [11]:

U (k+1)
i = u G(k+1)

i + (1 − u)L(k+1)
i , (6)

x
(k+1)
i = x

(k)
i + U (k+1)

i , (7)

where u ∈ [0, 1] is called the unification factor and it determines the influence of
the global and local search direction in Eq. (6). The standard local and global
PSO variant is obtained for u = 0 and u = 1, respectively. All intermediate
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Table 1. An example of the Smallest Position Value representation scheme

Jobs j 1 2 3 4 5

Particle xij 1.45 −3.54 2.67 −2.29 −4.02

Sequence sij 5 2 4 1 3

values of u ∈ (0, 1) correspond to composite variants of PSO that combine the
exploration and exploitation characteristics of the global and local variant.

UPSO can be further enhanced by incorporating a stochastic parameter in
Eq. (6). This parameter imitates mutation in evolutionary algorithms, although,
it is directed towards a direction that is consistent with the PSO dynamic. Thus,
Eq. (6) can be written either as:

U (k+1)
i = r3 u G(k+1)

i + (1 − u)L(k+1)
i , (8)

which is mostly based on the local variant or, alternatively,

U (k+1)
i = u G(k+1)

i + r3 (1 − u)L(k+1)
i , (9)

which is mostly based on the global variant. The parameter r3 ∼ N (M, Σ)
is a normally distributed parameter with mean vector M and variance ma-
trix Σ. Based on the analysis of Matyas [26] for stochastic optimization al-
gorithms, convergence in probability was proved for the schemes of Eqs. (8) and
(9) [11].

2.3 The Smallest Position Value Representation Scheme

PSO and UPSO were designed to work primarily on real–valued search spaces.
Thus, in different problems, proper representation schemes may be required. For
example, a rounding scheme was used for the transformation of real to integer
values in discrete search spaces [27, 12].

In SMTWT, each real–valued particle must correspond to a permutation of
jobs. For this purpose, the SPV scheme [9] was used. More specifically, let n
be the number of jobs. Then, the ith particle, xi = (xi1, xi2, . . . , xin)�, is n–
dimensional and each component corresponds to one job, i.e., xij corresponds to
the jth job. The sequence of jobs that corresponds to xi is an integer vector

si = (si1, si2, . . . , sin)�,

where sij , j = 1, 2, . . . , n, is the assignment of job j in the processing order.
The determination of sij is based on xij such that jobs with smaller values
of xij are scheduled first. An example is provided in Table 1 for the particle
xi = (1.45, −3.54, 2.67, −2.29, −4.02)�. The smallest component of xi is −4.02,
which corresponds to the fifth job. Thus, job 5 is scheduled first and the first
component of the sequence si takes the value si1 = 5. The second smallest
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component of xi is −3.54, which corresponds to job 2. Therefore, job 2 is the
second job in the ordering, i.e., si2 = 2, etc.

Thus, each particle of the swarm corresponds to a sequence of jobs that is
used for the computation of the total tardiness using Eq. (1). Obviously, the
same sequence vector corresponds to all particles with the same ordering in their
components. This property could lead the algorithm to search stagnation if some
assumptions that are usually made in static optimization problems and concern
the bounding of particles and velocities within specific bounds are not abandoned
in the case of SMTWT. The SPV representation scheme was applied successfully
with the inertia weight version of PSO [28] on the SMTWT problem [9]. We
adopted SPV also in our approach, with the constriction coefficient version of
PSO and UPSO.

3 Results and Discussion

We investigated the performance of three UPSO variants that proved to be
very efficient in static and dynamic optimization problems [12, 13, 14, 15]. More
specifically, we used the main UPSO scheme of Eq. (6) with u = 0.2 and u =
0.5, as well as the scheme with mutation defined by Eq. (8) with u = 0.1;
r3 ∼ N (M, Σ); M = (0, . . . , 0)�; Σ = σ2I with σ = 0.01, and I being the
n×n identity matrix. We denote these variants as UPSO1, UPSO2, and UPSOm,
respectively. Their performance was compared with the performance of the global
and local PSO variant. These variants are denoted as PSOg and PSO� and they
are obtained from the UPSO scheme for u = 1 and u = 0, respectively. For all
algorithms, the default PSO parameter set, i.e., χ = 0.729 and c1 = c2 = 2.05,
was used [24], while the neighborhood radius was ρ = 1.

The established sets of randomly generated benchmark problems of 40 and
50 jobs, each containing 125 instances, that are provided via ORLIB [7, 9] were
employed in our experiments. The swarm size was equal to N = 10×n, where n
is the number of jobs (also equal to the dimension of the problem using the SPV
representation scheme). For each problem instance, 25 independent experiments
were conducted. At each experiment, the algorithm was applied until the optimal
solution was detected or a maximum number of 2000 iterations was reached.
The particles and velocities were initialized randomly in [−1, 1]n, although no
constraints were posed on them during the execution of the algorithm.

For each algorithm, we recorded the percentage, nopt, of successful exper-
iments, i.e., experiments where the optimal solution was found, as well as the
expected number of iterations, which is defined as the mean number of iterations
required in the successful experiments. Also, we computed the average relative
percent deviation from the optimal solution, which is defined as:

Δavg =
R∑

i=1

[
1
R

(
100(si

b − s∗)
s∗

)]
,

where s∗ is the optimal solution; si
b is the best solution obtained in the ith exper-

iment; and R is the total number of experiments for all instances per problem,



766 K.E. Parsopoulos and M.N. Vrahatis

Table 2. Results for the SMTWT problems

# Jobs Alg. nopt Exp. It. Δavg Δstd

PSOg 56.3% 229.6 1.692 8.931

PSO� 47.0% 613.0 0.754 4.415

40 UPSO1 62.5% 158.1 1.765 10.865

UPSO2 54.1% 131.1 2.147 11.053

UPSOm 65.8% 525.6 0.478 3.206

PSOg 42.2% 275.6 1.778 7.566

PSO� 27.0% 338.4 1.292 3.898

50 UPSO1 43.7% 182.3 1.483 6.954

UPSO2 37.7% 178.4 2.329 9.352

UPSOm 39.6% 472.3 0.720 3.029

i.e., R = 25 × 125 = 3125. Furthermore, the standard deviation, Δstd, of the
relative percent deviation from the optimal solution was recorded. The values
Δavg and Δstd provide also an intuition regarding the behavior of the algorithm
in cases where it failed to detect the optimal solution, since smaller values reveal
a tendency of the algorithm to converge towards sub–optimal solutions that lie
closer to the optimal one. All results are reported in Table 2. The values of Δavg
and scaled nopt in [0, 1], per algorithm for the problems of 40 and 50 jobs are
depicted also in the bar graphs of Figs. 1 and 2, respectively.

In the case of 40 jobs, UPSOm had the best performance with respect to
the number of successes, followed closely by UPSO1 (u = 0.2). Also, UPSOm

exhibited the best values of Δavg and Δstd. This is an indication of the good
quality of sub–optimal solutions it detected in the unsuccessful experiments.
However, this comes with a higher computational cost, since UPSOm required a
large number of iterations. Also, we notice that PSOg performs better than PSO�

in terms of the number of successful experiments, although, it has higher values
of Δavg and Δstd, i.e., it is less robust. This is due to the higher exploitation
ability of PSOg compared to PSO�, which results in faster convergence but with
the risk of premature convergence. UPSO1 increases the exploitation ability of
PSO�, with an immediate impact on its performance and success rates, justifying
the usefulness of the unified scheme.

Similar comments can be made for 50 jobs problem. In this case, UPSO1
outperformed all other methods with respect to the number of successes, followed
by PSOg. UPSOm has a slightly worst performance, although with significantly
smaller values of Δavg, but higher expected number of iterations. The most
balanced scheme, UPSO2 (u = 0.5), had better performance than PSO�, but
it was always outperformed by the rest variants, similarly to the case of 40
jobs.

Summarizing the results, UPSO1, which constitutes a modified version of
PSO� with increased exploitation ability, is the most promising scheme since it
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Fig. 1. Bar graph of nopt normalized in [0, 1], and Δavg for the 40 jobs problems
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Fig. 2. Bar graph of nopt normalized in [0, 1], and Δavg for the 50 jobs problems

always exhibited robust behavior and required significantly smaller number of
iterations than its competitive variants, UPSOm and PSOg. This justifies that
the unified scheme can produce more efficient PSO variants.

4 Conclusions

A first study of UPSO on the Single Machine Total Weighted Tardiness problem
was provided. Widely used benchmark problems were employed and results were
reported and compared with that of established PSO variants. UPSO had the
best performance and robust behavior, enhancing the standard PSO variants and
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justifying the usefulness of the unified scheme. Further investigation is needed
to fully reveal the ability of UPSO in tackling scheduling problems, as well as
possible impact of the representation scheme on the algorithm’s performance.
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