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Abstract. Clustering can be defined as the process of partitioning a
set of patterns into disjoint and homogeneous meaningful groups (clus-
ters). There is a growing need for parallel algorithms in this field since
databases of huge size are common nowadays. This paper presents a par-
allel version of a recently proposed algorithm that has the ability to scale
very well in parallel environments.

1 Introduction

Clustering, that is the partitioning a set of patterns into disjoint and homoge-
neous meaningful groups (clusters), is a fundamental process in the practice of
science. In particular, clustering is fundamental in knowledge acquisition. It is
applied in various fields including data mining [6], statistical data analysis [1],
compression and vector quantization [15]. Clustering is, also, widely applied in
most social sciences.

The task of extracting knowledge from large databases, in the form of clus-
tering rules, has attracted considerable attention. Due to the growing size of
the databases there is also an increasing interest in the development of parallel
implementations of data clustering algorithms. Parallel approaches to clustering
can be found in [9,10,12,14,16].

Recent software advances [7,11], have provided the ability to collections of
heterogeneous computers to be used as a coherent and flexible concurrent com-
putational resource. The vast number of individual Personal Computers available
in most scientific laboratories suffices to provide the necessary hardware. These
pools of computational power exploit network interfaces to link individual com-
puters. Since network infrastructure is currently immature to support high speed
data transfer interfaces, it comprises a bottleneck to the entire system. So appli-
cations that have the ability to exploit specific strengths of individual machines
on a network, while minimizing the required data transfer rate are best suited
for these environments.

The results reported in the present paper indicate that the recently proposed
k-windows algorithm [17] has the ability to scale very well in such environments.
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A fundamental issue in cluster analysis, independent of the particular tech-
nique applied, is the determination of the number of clusters that are present in
the results of a clustering study. This remains an unsolved problem in cluster
analysis. The k-windows algorithm is equipped with the ability to automatically
determine the number of clusters.

The rest of the paper is organized as follows. Section 2 is devoted to a brief
description of the workings of the k-windows algorithm. In Section 3 the parallel
implementation of the algorithm is exposed, while Section 4, is devoted to the
discussion of the experimental results. The paper ends with concluding remarks
and a short discussion about further research directions.

2 The k-Windows Algorithm

The key idea behind this algorithm is the use of windows to determine clusters.
A window is defined as an orthogonal range in d-dimensional Euclidean space,
where d is the number of numerical attributes. Therefore each window is a d-
range of initial fixed area a. Intuitively, the algorithm tries to fill the mean space
between two patterns with non overlapping windows. Every pattern that lies
within a window is considered to belong to the corresponding cluster. Iteratively
the algorithm moves each window in the Euclidean space by centering them
on the mean of the patterns included. This iterative process continues until
no further movement results in an increase in the number of patterns that lie
within each window (see solid line squares in Fig. 1). Subsequently, the algorithm
enlarges every window in order to contain as many patterns as possible from the
corresponding cluster.

In more detail, at first, k means are selected (possibly in a random way).
Initial d-ranges (windows) have as centers those initial means and each one
is of area a. Then, the patterns that lie within each d-range are found, using
the Orthogonal Range Search technique of Computational Geometry [2,4,5,8,
13]. The latter has been shown to be effective in numerous applications and a
considerable amount of work has been devoted to this problem [13]. The main
idea is to construct a tree–like data structure with the properties that give the
ability to perform a fast seach of the set of the patterns.

An orthogonal range search is based on this pre–process phase where the tree
is constructed. Thus patterns that lie within a d-range can be found traversing
the tree. The orthogonal range search problem can be stated as follows:

– Input:
a) V = {p1, . . . , pn} is a set of n points in R

d the d-dimensional Euclidean
space with coordinate axes (Ox1, . . . , Oxd),
b) a query d-range Q= [a1, b1] × [a2, b2] × · · · × [ad, bd] is specified by two
points (a1, a2, . . . , ad) and (b1, b2, . . . , bd), with aj � bj .

– Output:
report all points of V that lie within the d-range Q.
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Fig. 1. Movements and enlargements of a window.

Then, the mean of the patterns that lie within each range, is calculated.
Each such mean defines a new d-range, which is considered as a movement of
the previous one. The last two steps are executed repeatedly, until there is no
d-range that includes a significant increment of patterns after a movement.

In a second phase, the quality of the partition is calculated. At first, the
d-ranges are enlarged in order to include as many patterns as possible from the
cluster. Then, the relative frequency of patterns assigned to a d-range in the
whole set of patterns, is calculated. If the relative frequency is small, then it is
possible that a missing cluster (or clusters) exists. Thus, the whole process is
repeated.

The windowing technique of the k-windows algorithm allows for a large num-
ber of initial windows to be examined, without any significant overhead in time
complexity. Then, any two overlapping windows are merged. Thus the number
of clusters can be automatically determined by initializing a sufficiently large
number of windows. The remaining windows, define the final set of clusters.

3 Parallel Implementation

When trying to parallelize the k-windows algorithm, it is obvious that the step
that requires the most computational effort is the range search. For this task we
propose a parallel algorithmic scheme that uses the Multi-Dimensional Binary
Tree for a range search.

Let us consider a set V = {p1, p2, . . . , pn} of n points in d-dimensional space
R

d with coordinate axes (Ox1, Ox2, . . . , Oxd). Let pi = (xi
1, x

i
2, . . . , x

i
d) be the

representation of any point pi of V .
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Definition: Let Vs be a subset of the set V . The middle point ph of Vs with
respect to the coordinate xi (1 � i � d) is defined as the point which divides
the set Vs-{ph} into two subsets Vs1 and Vs2 , such that:
i) ∀pg ∈ Vs1 and ∀pr ∈ Vs2 , xg

i � xh
i � xr

i .
ii) Vs1 and Vs2 have approximately equal numbers of elements: If |Vs| = t then
|Vs1 | = � t−1

2 � and |Vs2 | = � t−1
2 �.

The multidimensional binary tree T which stores the points of the set V is
constructed as follows.

1. Let pr be the middle point of the given set V , with respect to the first
coordinate x1. Let V1 and V2 be the corresponding partition of the set V -
{pr}. The point pr is stored in the root of T .

2. Each node pi of T , obtains a left child left[pi] and a right child right[pi] as
follows: MBT(pr,V1,V2,1)

procedure MBT(p,L,R,k)
begin
if k = d + 1 then k ←− 1
if L �= ∅ then
begin

let u be the middle point of the set L with respect to the coordinate xk and
let L1 and L2 be the corresponding partition of the set L-{u}.
left[p]←− u
MBT(u,L1,L2,k + 1)

end
if R �= ∅ then
begin

let w be the middle point of the set M with respect to the coordinate xk

and let R1 and R2 be the corresponding partition of the set R-{w}.
right[p]←− w
MBT(w,R1,R2,k + 1)

end
end

Let us consider a query d-range Q= [a1, b1]× [a2, b2]× · · · × [ad, bd] specified by
two points (a1, a2, . . . , ad) and (b1, b2, . . . , bd), with aj � bj . The search in the
tree T is effected by the following algorithm which accumulates the retrieved
points in a set A, initialized as empty:

The orthogonal range search algorithm
1) Let pr be the root of T
2) A ←− SEARCH(pr,Q,1)
3) return A
procedure SEARCH(pt,Q,i)
begin
initialize A ←− if i = d + 1 then i←− 1
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if pt ∈ Q
then A←− A∪{pt}
if pt �= leaf then
begin
if ai � xt

i then A←− A∪ SEARCH(left[pt],Q,i + 1)
if xt

i � bi then A←− A∪ SEARCH(right[pt],Q,i + 2)
end
return A
end

The orthogonal range search algorithm has a complexity of O(dn1− 1
d +

k) [13], while the preprocessing step for the tree construction has θ(dn log n).
In the present paper we propose a parallel implementation of the previous

range search algorithm. The algorithmic scheme we propose uses a Server–Slave
model. More specifically, the server executes the algorithm normally but when
a range search query is to be made, it spawns a sub–search task at an idle
node. Then it receives any new sub-search messages from that node, if any, and
spawns them to different nodes. As soon as a node finishes with the execution of
its task it sends its results to the server and it is assigned a new sub search if one
exists. At the slave level during the search if both branches of the current node
have to be followed and the current depth is smaller than a preset number (user
parameter) then one of them is followed and the other is sent as new sub-search
message to the server. For example Fig. 2, illustrates how the spawning process
works, when both children of a tree node have to be followed then one of them
is assigned to a new node.

CPU 1

CPU 1

CPU 1 CPU 2

SPAWNED

CPU 2

SPAWNED

CPU 3

Fig. 2. The spawning process.

Let us assume that N computer nodes are available. In the proposed imple-
mentation the necessary communication between the master and the slaves is a
“Start a new sub–search” message at node pi for the d-range Q. The size of this
message depends only on the dimension of the problem and subsequently of the
range Q. On the other hand the slave–to-master communication, has two differ-
ent types. The first type is the result of a sub–search. This, as it is shown in the
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code below, is a set of points that belong to the analogous range. In a practical
setting it is not obligatory to return all the points but only their number and
their median, since only these two quantities are necessary for the k-windows
algorithm. The other type of slave–to-master communication is for the slave to
inform the master that a new sub–search is necessary. This message only needs
to contain the node for which the new sub–search should be spawned since all
the other data are already known to the master.

The parallel orthogonal range search algorithm
1) Let pr be the root of T
2) A ←− P SEARCH(pr,Q,1)
3) return A procedure P SEARCH (pt,Q,A,i)

begin
Init a queue NQ of N nodes.
Init a queue of tasks TQ containing only task (pt,i)
set NTASKS ←− 0
set FINISHED ←− 0
do

begin
if NQ not empty and TQ not empty then
begin

pop an item Ni from NQ
pop an item (pi,i) from TQ
spawn the task SLAVE SEARCH(pi,Q,i) at node Ni

set NTASKS ←− NTASKS + 1
end
if received End–Message Ai from node Ni then
begin

add Ni to NQ
set A=A∪Ai

set FINISHED ←− FINISHED + 1
end
if received Sub–Search message (pi,i) from node Ni then
begin

add (pi,i) to TQ
set NTASKS ←− NTASKS + 1

end
while NTASKS �= FINISHED
end

procedure SLAVE SEARCH(pt,Q,i)
begin
initialize A ←− if i = d + 1 then i←− 1
if pt ∈ Q

then A←− A∪{pt}
if pt �= leaf then
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begin
if bi < xt

i then SLAVE SEARCH(left[pt],Q,i + 1)
if xt

i < ai then SLAVE SEARCH(right[pt],Q,i + 1)
if ai < xt

i AND xt
i < bi then

begin
SLAVE SEARCH(left[pt],Q,A,i + 1)
if (i � PREDEFINED VALUE ) then

send Sub–Search message (right[pt],Q,i + 1) to server
else SLAVE SEARCH(right[pt],Q,A,i + 1)

end
end
send End–Message A to server
end

It should also be noted that using this approach all the different nodes of the
parallel machine must have the entire data structure of the tree stored in a local
medium. This way there is no data parallelism, in order to minimize running the
time of the algorithm.

4 Results

The k-Windows clustering algorithm was developed under the Linux operating
system using the C++ programming language. Its parallel implementation was
based on the PVM parallel programming interface. PVM was selected, among
its competitors because any algorithmic implementation is quite simple, since it
does not require any special knowledge apart from the usage of functions and
setting up a PVM daemon to all personal computers, which is trivial.

The hardware used for our proposes was composed of 16 Pentium III person-
als computers with 32MB of RAM and 4GB of hard disk availability. A Pentium
4 personal computer with 256MB of RAM and 20GB of hard disk availability
was used as the server for the algorithm, as it is exhibited in Fig. 3.

16 CPUs

SERVER

Fig. 3. The hardware used.



Parallel Unsupervised k-Windows 343

To evaluate the efficiency of the algorithm a large enough dataset had to
be used. For this purpose we constructed a random dataset using a mixture
of Gaussian random distributions. The dataset contained 40000 points with 5
numerical attributes. The points where organized in 4 clusters (small values at
the covariance matrix) with 2000 points as noise (large values at the covariance
matrix).

The value of the user parameter appears to be critical for the algorithm.
If it is too small then no sub–searches are spawned. If it is too large the time
to perform the search at some computers might be smaller than the time that
the spawning process needs so an overhead to the whole process is created that
delays the algorithm. From our experiments the value of 9, for a dataset of this
size, appears to work very well.

As it is exhibited in Fig. 4 while there is no actual speedup for 2 nodes, as
the number of nodes increases the speed up increases analogously.

Nodes Time (sec) Speedup
1 4.62e+03 1
2 4.5e+03 1.0267
4 1.23e+03 3.7561
8 618 7.4757
16 308 15.0000

Fig. 4. Times and Speedup for the different number of CPUs

5 Conclusions

Clustering is a fundamental process in the practice of science. Due to the growing
size of current databases, constructing efficient parallel clustering algorithms
has been attracting considerable attention. The present study presented the
parallel version of a recently proposed algorithm, namely the k-windows. The
specific algorithm is also characterized by the highly desirable property that
the number of clusters is not user defined, but rather endogenously determined
during the clustering process. The numerical experiments performed indicated
that the algorithm has the ability to scale very well in parallel environments.
More specifically, it appears that its running time decreases linearly with the
number of computer nodes participating in the PVM.

Future research will focus on reducing the space complexity of the algorithm
by distributing the dataset to all computer nodes.
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