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Abstract. The exponential growth of databases containing personal in-
formation has rendered the task of extracting high quality information
from collections of such databases very important. This task is hindered
by the security concerns that arise, due to the confidentiality of the data
records, and the reluctance of the organizations to disclose their data.
This paper proposes a clustering algorithmic scheme that ensures privacy
and confidentiality of the data without compromising the effectiveness
of the clustering algorithm nor imposing high communication costs.

1 Introduction

Clustering, that is “grouping a collection of objects into subsets or clusters,
such that those within one cluster are more closely related to one another than
objects assigned to different clusters” [8], is a fundamental process in knowl-
edge acquisition. With the availability of inexpensive storage and the progress
of data capturing technology, many organizations have created heterogeneous
databases of data, and this is expected to continue. Thus, any knowledge discov-
ery methodology, such as clustering, must take into consideration the distributed
and heterogeneous nature of the data. Evidently, clustering rules extracted from
a collection of databases tend to reflect globally meaningful results, rather than
cognition which is embedded in a particular database.

The scenario of having an individual’s transactions divided among different
organizations is common in real life [19]. This raises justifiable concerns among
privacy advocates, that may prevent the necessary sharing of data, and hence
discourage clustering projects involving more than one organization. Clustering
and privacy are therefore, often perceived to be at odds. Clustering results rarely
violate privacy as such, since they generally reveal high–level knowledge, rather
than disclosing instances of sensitive data. However, the concern among privacy
advocates is well founded, as bringing data together to support clustering and
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data mining makes in general misuse easier [19]. The problem, therefore is not
data clustering per se, but the manner in which it is performed. Thus, there is a
growing need for the development of methods that have endogenous mechanisms
to protect the confidentiality of sensitive data.

Clustering can conform with privacy preserving requirements by satisfying
two conditions. Primarily, clustering algorithms need to be applicable without
data sharing among the data proprietors; and secondly, no private information
must be deducible from the extracted results. If these conditions are met clus-
tering will not compromise privacy and it will contribute to obtaining globally
meaningful results. One approach recently investigated is the addition of “noise”
to the data before the data mining process [3, 5]. Another approach, restricted
to classification, considers how much information can be inferred from the data
made available through data mining algorithms, and how to minimize infor-
mation leakage [3, 10]. Also, the extraction of association rules in horizontally
partitioned data, was addressed in [9], while [18] addresses the same problem
for vertically partitioned data. Concerning clustering, in [19] an adaptation of
the k-means algorithm using several primitives from the secure multi-party com-
putation literature, was proposed. Rather than sharing parts of the original or
perturbed data, the authors of [11] suggest to transmit the parameters of suit-
able generative models, built at each local data site, to a central location that
actually performs the clustering procedure. Finally, in [13], privacy preserving
hierarchical data clustering methods are introduced using a family of geometric
data transformation methods.

In this paper we assume a setting similar with that of [19], in which a number
of different sites hold data for different attributes of a common set of entities
(vertically partitioned data). The scope of each site is to obtain the clustering
result over all its entities, but no site wants to reveal any information about its
own attribute values. To this end, based on the recently proposed k-windows
clustering algorithm [20], we develop a new algorithmic scheme that prevents
the sharing of any meaningful information among the sites involved, results the
same output as that obtained by the k–windows algorithm been applied to the
unified database, and it does not raise any significant communication cost. Note
that it is assumed that there does not exist a malicious site that provides wrong
pattern lists in order to force the other sites to provide pattern lists, which can
be used to gain information about the data. This assumption can be justified to
the extent that the organizations that venture such projects have an established
collaboration, rather than a one time partnership. Bad faith in this setting will
be punished outside the algorithm.

2 Unsupervised k–Windows Clustering Algorithm

Intuitively, the k-windows algorithm tries to place a d–dimensional window that
will contain all patterns belonging to a single cluster; for all clusters present in
the dataset [20]. This goal is met by iteratively moving and enlarging the win-
dows. During movement each window is centered at the mean of patterns that
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are included in it. This process is iteratively executed as long as the distance
between the new and the previous center exceeds the user–defined variability
threshold, θv. The enlargement process, takes place at each dimension sepa-
rately. Each range of a window is enlarged by a proportion θe/l, where θe is
user–defined and l stands for the number of previous successful enlargements.
Next, the movement process is invoked. Once movement terminates, the propor-
tional increase in the number of patterns included in the window is calculated.
If this proportion does not exceed the user–defined coverage threshold, θc, the
enlargement and movement steps are rejected and the position and size of the
d–range are reverted to their prior to enlargement values. Otherwise, the new
size and position are accepted. If enlargement is accepted for dimension d′ � 2,
then all dimensions d′′, such that d′′ < d′, undergo enlargement assuming as
initial position the current position of the window. This process terminates if it
does not result in a proportional increase in the number of patterns included in
the window beyond the threshold θc.

The unsupervised k-windows algorithm is able to approximate the number of
clusters, by applying the k-windows algorithm using a large number of initial
windows. The windowing technique of the k-windows algorithm allows for a large
number of initial windows to be examined, without any significant overhead in
time complexity. Once movement and enlargement of all windows terminate,
all overlapping windows are considered for merging. The merge operation is
guided by a merge threshold, θm. Having identified two overlapping windows,
the number of patterns that lie in their intersection is computed. Next, the
proportion of this number to the total patterns included in each window is
calculated. If the mean of these two proportions exceeds θm, then the windows are
considered to belong to a single cluster and are merged, otherwise not. All these
procedures are illustrated in Fig. 1, where (a) depicts the movement procedure,
(b) the enlargement procedure and (c),(d),(e) are the three different instances
of the merging procedure. For a comprehensive description of the algorithm and
investigation of its capability to endogenously identify the number of clusters
present in a dataset, refer to [15]. The unsupervised k-windows algorithm applied
in both artificial and real life datasets, has proved to be efficient and effective
in obtaining the actual number of clusters present in the dataset and achieving
high classification results [17]. A high level description of the algorithm follows.
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Fig. 1. (a) The movement procedure. (b) The enlargement procedure. (c) Windows
that satisfy the similarity criterion of the merging procedure. (d) Windows that satisfy
the merging criterion of the merging procedure. (e) Overlapping windows that do not
satisfy any of the criteria of the merging procedure.
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1. Set {the input parameters of k-windows algorithm}.
2. Initialize a set W of d–ranges.
3. Perform movements and enlargements of the d–ranges in W .
4. Perform the merging operation of the d–ranges in W .
5. Report the groups of d–ranges that comprise the final clusters.

3 Privacy Preserving Version of the k-Windows
Algorithm

In this paper we consider the problem of privacy preserving unsupervised k-
windows clustering, which can be formally defined as follows. Let r be the number
of different sites, each holding a database with different attributes for the same
set of n entities. All sites are interested in clustering through the unsupervised
k-windows method the union of their databases, resulting in (a) the number
of clusters over the union of data, (b) the final position of the centers of the
clusters, and (c) cluster assignment for all points, under the following privacy
conditions:

1. All databases are private, implying that there will be no disclosing of any
database to any other site, or to a third party.

2. There is minimal necessary information sharing across the private databases,
which means that the result of the clustering algorithm will be obtained
without revealing any additional information.

To expose the workings of the proposed algorithmic scheme that enables the ap-
plication of the k-windows algorithm in this setting, we separately describe each
step of the methodology in the following subsections. Subsequently, in Section 4,
the security of the scheme and privacy at each step are analyzed.

3.1 Determination of the Initial d–Ranges

The initialization phase requires the mutual agreement of all sites. Specifically,
a set of k points that will comprise the centers of the initial d–ranges, should be
mutually agreed upon. Each of these points represents a center around which a
d-range will be initialized. Having decided on the identities of the patterns that
will comprise the initial centers of the d–ranges, the size of the edges of these
ranges must be set. The size of each edge can be decided locally; that is, by the
site that holds the values for the corresponding coordinate (attribute). As it will
be shown below, this information need not be communicated among sites.

3.2 Movements and Enlargements

After the initialization step has been completed for all k d–ranges, each site
knows: (a) the coordinates of the centers of the ranges that correspond to the
attribute values that it holds; and (b) the size of the edges of the d–ranges for the
same coordinates. From this information alone, each site can conclude the set
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of points that are enclosed in a particular d–range with respect to the dataset
it holds. The complete set of points that are included in the full–dimensional
d–range is the intersection of the corresponding sets of all sites. The exact pro-
cedure for the computation of the set intersection and its privacy analysis are
given in Section 4. This operation for the simple case of two sites, each hold-
ing one attribute, is illustrated in Fig. 2. The two dimensional range, Range 1,
has as center the point P1. Site 1 has decided the size of the edge of Range 1
for attribute 1, while Site 2 has determined the size of the edge for attribute
2. As previously mentioned, this information is private and need not be com-
municated. Site 1, therefore, concludes that the patterns that are included in
Range 1 are V1 = {P1, P2, P3, P4, P5}; while Site 2 concludes that for the same
Range the enclosed patterns are V2 = {P1, P3, P4, P7}. As shown in Fig. 2 the
patterns which are included in Range 1 with respect to all dimensions, lie in the
intersection of the two sets, V = V1 ∩ V2 = {P1, P3, P4}. To obtain the result
of the set intersection the parties apply the set intersection protocol for private
databases described in Section 4.

Subsequently, the mean of the patterns that lie within each d–range (i.e. the
mean value of the d–dimensional points) needs to be calculated. This operation
is straightforward as each site can compute the mean for its own coordinates
and no information exchange is required. Each site can then update the position
of the center of the d–range with respect to the specific coordinates, so as to
coincide with the previously computed mean. The process of moving the window
is iteratively applied as long as the number of patterns that lie in the d–range
is significantly increased as a result of this operation. The stopping criterion for
this operation is the user–defined variability threshold, θv, that corresponds to
the least change in the center of a d–range that renders the re-centering of the
d–range acceptable. In this setting, the stopping criterion must be satisfied for all
the sites in order to stop the movement process. Once movement is terminated,
the d–ranges are enlarged in order to enclose as many patterns as possible from
the cluster.

The enlargement process is executed in a similar manner with movement.
Since enlargement is considered at each dimension separately, each site can
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Fig. 2. Determination of points that are included in a d–range, over 2 sites
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perform the operation for the coordinate(s) (i.e. attributes) it holds. Once a site
has performed enlargement in a particular coordinate the new set intersection is
computed for the enlarged d–range. After the enlargement in one dimension is
performed, the window is re-centered, through the movement process described
above. Once movement terminates, the proportional increase in the number of
patterns included in the window is calculated. If this proportion does not exceed
the user–defined coverage threshold, θc, the enlargement and movement steps
are rejected and the position and size of the d–range are reverted to their prior
to enlargement values. Otherwise, the new size and position are accepted. If en-
largement is accepted for a dimension higher than one, the enlargement process
for that d–range is reconsidered for all the lower dimensions (as described in
Section 2). This process terminates if enlargement in any dimension does not re-
sult in a proportional increase in the number of patterns included in the window
beyond the threshold θc.

3.3 Merging of the Resulting d–Ranges

To perform the merging operation no information need to be communicated
among the sites. Since all the sites know the points that lie inside each window,
they can determine the possible overlapping of any two windows. For each pair of
overlapping d–ranges, each site can determine the proportion of common points
with respect to the total number of patterns included in each window. Comparing
this proportion with the threshold, θm, it is possible to determine whether the
corresponding d–ranges belong to the same cluster.

4 Security and Privacy Analysis

To meet the privacy conditions for the complete algorithmic scheme, i.e., private
databases and minimal necessary information sharing across them, it is sufficient
to satisfy these conditions during the computation of the set of objects that lie in
each d-range query. The computation of this set takes place in two stages. In the
first stage each site individually computes the set of objects that lie in a d-range
with respect to its attributes. The second stage involves the computation of the
intersection of all individually computed sets. The privacy of the first stage is
ensured as the computation is private to each site. Thus, only the privacy of the
set intersection needs to be investigated.

To perform such a privacy analysis we first need to establish a security
model. This is performed through the framework of secure multi–party com-
putation [7, 21]. In this contribution we assume the security model to be the
semi-honest [2, 7]. According to this model, the sites follow the protocol prop-
erly with the exception that they can retain a record of all their intermediate
computations and received messages, in an attempt to obtain additional informa-
tion if possible. Under this model, the proposed methodology considers several
multi-party set intersections using a secure protocol that involves homomorphic
encryptions and hashing [6].
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The problem of set intersection of private databases in a multi-party envi-
ronment is defined as follows. Assume that there are r parties, S1, . . . , Sr, with
corresponding lists of inputs V1, . . . , Vr from some domain. At the end all parties
learn which specific inputs are shared among all databases, without obtaining
any additional information. The correspondence to our case is direct.

Considerable effort has been devoted to the development of protocols that ad-
dress the problem of finding the intersection of two lists while revealing only the
intersection. In [12] two solutions to this problem are presented. The first solution
requires the oblivious evaluation of n polynomials of degree n, while the second
solution requires the evaluation of n2 linear polynomials, where n denotes the
cardinality of the databases. In [2], the problem of two set intersection, intersec-
tion size, equijoin and equijoin size are studied using commutative encryptions
and hash functions, and secure protocols with low computation and communica-
tion costs are provided. In our contribution, we adapt the multi-party protocol
introduced in [6]. This protocol involves homomorphic encryption schemes and
oblivious polynomial evaluation, it considers a leader party and r − 1 client par-
ties and is briefly described in the following steps. Without loss of generality, it
is assumed that each list contains lc inputs. For more details refer to [6].

1. A client party Si, for 1 � i � r − 1, generates a polynomial Qi of degree lc
whose roots are its inputs, and uses its own public key to homomorphically
encrypt the polynomial coefficients. Si also chooses lc sets of r − 1 random
numbers, {si

j,1, . . . , s
i
j,r−1}lc

j=1, which can be viewed as a matrix with lc rows
and r − 1 columns. This matrix is chosen such that the XOR of each row
sums to zero. For each column l (1 � l � lc), the client party encrypts the
corresponding shares using the public key of client Sl. Then, it sends all
encrypted elements to a public bulletin board (or just to the leader party
who acts in such a capacity).

2. For each data item y in his list, the leader Sr prepares (r−1) random shares
σy,l, one for each column of the matrix, where

⊕r−1
l=1 σy,l = y. Then, for each

of the lc elements of the matrix column representing client Sl, he computes
the encryption of (rny,l ·Ql(y)+σy,l) using Sl’s public key and a new random
number rny,l. Thus, the leader generates lc tuples of r − 1 elements each.
Then, he permutes randomly the order of the tuples and sends the resulting
data.

3. Each client Sl decrypts the r entries which are encrypted with its public key,
i.e., the lth column generated by Sr, which has lc items, and the (r − 1) lth
columns generated by the clients (also of lc items). Then, Sl computes the
XOR of each row in the resulting matrix, (

⊕r−1
i=1 si

j,l)⊕ σj,l, and sends these
lc results.

4. Each site Si checks if the XOR of the (r − 1) published results for each row
is equal to the value y of its input. If this holds, then

⊕r−1
l=1

(
(
⊕r−1

i=1 si
j,l) ⊕

σj,l

)
= y, and y is concluded to be in the list intersection.

The prescribed multi-party set intersection protocol is proved to be correct
at evaluating the set intersection and secure with respect to all parties’ privacy
for the semi-honest model case [6].
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Regarding the security control of the multiple queries, the semi-honest model
on which the above security analysis is based allows the sites to keep a record of
all their intermediate computations and received messages, to infer some previ-
ously unknown, confidential data about a given entity. Such threats may result in
exact, or partial information disclosure [1]. A survey of methods that have been
proposed to address the problem of security control for the multiple queries was
published [1]. Evaluation criteria of such approaches include security, robustness,
suitability and cost. For a more recent survey of such techniques see [4].

5 Complexity Issues

The computational complexity of the algorithm depends on the computational
complexity of the range searches. To make this step efficient techniques from
Computational Geometry can be employed [14]. All these techniques have in
common the existence of a preprocessing stage at which they construct a data
structure for the patterns. This data structure allows them to answer range
queries in sub-linear time with respect to the size of the database. In this case,
however, we must also consider the complexity of the multi-party set intersec-
tion protocol. The communication overhead of this protocol is O(rlc), where r
represents the number of sites involved and lc is the maximum size of each ob-
ject set. The computation overhead comes up to O(rl2c ) which can be reduced
to O

(
r(lc + lc ln ln lc)

)
, through hash-to-bins method described in [6].

6 Discussion and Concluding Remarks

In this paper we present an algorithmic scheme that enables the application of
the k-windows algorithm [20] on vertically partitioned data, with privacy. In
this setting, the dataset is distributed over a number of sites and each site has
information for all the entities, but only for a specific subset of the attributes
of each entity. The goal is to cluster the known set of entities without revealing
any of the values on which the clustering is based on. The work by Vaidya
and Clifton [19] is directly comparable to the proposed setting. In [19] results
from secure multi-party computation are employed in order to develop a privacy
preserving k-means clustering algorithm. This approach ensures privacy, but
imposes a high communication cost of O(nrk), where r represents the number of
sites involved, and n the total number of points. The advantages of the proposed
approach reside in the clustering procedure per se, as well as, in the privacy
preservation. Regarding clustering the k–windows algorithm has the ability to
approximate the number of clusters present in a dataset [15, 16], provides high
quality results, and has a low algorithmic complexity. With respect to the privacy
issues, all privacy conditions are met through the adapted protocols for the
semi-honest model. This work can be extended in order to be applicable to
heterogeneous database models, as well as, to the case of horizontally partitioned
datasets.
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