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Abstract. Myocardial ischemia is caused by a lack of oxygen and
nutrients to the contractile cells and may lead to myocardial infarction
with its severe consequence of heart failure and arrhythmia. An
electrocardiogram (ECG) represents a recording of changes occurring
in the electrical potentials between different sites on the skin as a
result of the cardiac activity. Since the ECG is recorded easily and
non–invasively, it becomes very important to provide means of reliable
ischemia detection. Ischemic changes of the ECG frequently affect
the entire repolarization wave shape. In this paper we propose a new
classification methodology that draws from the disciplines of clustering
and artificial neural networks, and apply it to the problem of myocardial
ischemia detection. The results obtained are promising.
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1 Introduction

Myocardial ischemia is the most common cause of death in the industrialized
countries and, as a consequence, its early diagnosis and treatment is of great
importance. Myocardial ischemia diagnosis using long–duration electrocardio-
graphic recordings is a simple and non–invasive method that needs further de-
velopment before being used in everyday medical practice. The capability of
accurate and early detection of an acute ischemic event is critical for the per-
suadation of the proper treatment. The Electrocardiogram (ECG) represents a
recording of the changes occurring in the electrical potentials between different
sites on the skin as a result of the cardiac activity. Since the ECG is recorded
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easily and noninvasively, it becomes very important to provide means for reliable
ischemia detection from ECG analysis.

There are a few mandatory steps for automated detection of ischemic episo-
des. After the initial removal of noise it follows the second stage, when all the
important ECG features (J point, isoelectric line, and T wave peak) are extrac-
ted. Using the above features, in the third stage each cardiac beat is classified
as normal or ischemic. In the final stage, sequential ischemic beats are grouped
properly and the ischemic episodes can be identified.

The ST–T Complex of the ECG represents the time period from the end of
the ventricular depolarization to the end of the corresponding repolarization in
the electrical cardiac cycle. Ischemic changes of the ECG frequently affect the
entire repolarization wave shape and thus are inadequately described by isolated
features, even if these are obtained as an average of several signal samples [1]. Ad-
ditionally, in many cases the ST segment is sloped or is influenced by noise. The
approach proposed at the current work avoids the utilization of local, isolated
features by designing upon the Principal Component Analysis (PCA) technique
for extracting PCA coefficients (features) that describe the global content of the
ST–T Complex.

2 Preprocessing

A description of the European ST-T Database is provided in [2], explaining the
rules for the localization of the ST and T episodes. The main aim of the ECG
signal preprocessing is to prepare a compact description of the ST–T complex,
composed from the ST Segment and the T–wave, for input to the classification
methodology with the minimum loss of information. From the samples compo-
sing each beat, a window of 400 msec is selected (100 samples at the 250 Hz
sampling frequency). This signal component will form the input to the PCA to
describe most of its content within a few (i.e. five) coefficients. To have a re-
ference for the extraction of the relevant segment, the position of the R–peak
should be detected. The start of the ST–T Segment was selected at approxima-
tely 60 msec after the detected R peak. However, in the database, there are both
patients with bradycardia and tachycardia. Therefore, a more flexible approach
that accounts for heart rate variations is required. The selection of the distance
between the S point and the previously detected R–peak is correlated with the
heart rhythm of the patient. The distance between the R–peak and the J point
is in the range of 45–80 msec. Due to the fact that the correction of the ST–T
length using the Bazett’s formula, yields to a similar PCA basis function set,
an analysis approach is selected with a fixed time window of 400 msec. This
assumption is valid for the set of first 5 Principal Components (PCs) we used
for representation. During the ST–T segment extraction, we rejected a small
number (less than 1%) of ST–T segments, considered as particularly noisy.

The PCA method transforms a set of correlated random variables of dimen-
sionality m, to a set of d � m uncorrelated (in terms of their second order
statistics) variables according to the direction of maximum variance reduction
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in the training set. The uncorrelated variables correspond to the subspace de-
composition based on the first principal components of the input data. This
decomposition is in terms of second order statistics optimum, in the sense that
it permits an optimal reconstruction of the original data in the mean–square
error sense. In our case, PCA has performed well for the extraction of represen-
tative vectors with only five coefficients. Thus, at the particular dimensionality
reduction problem there is not sufficient evidence that the successive samples of
the ECG signal are correlated in complex nonlinear ways. The ST–T Segment
can be reconstructed effectively with the first five PCA projections that repre-
sent about 98.1% of the total signal energy. The PCA projection coefficients are
then fed to the Feedforward Neural Network (FNN) to perform the classification
decision about the category pertaining to each analysis case (i.e. normal, abnor-
mal, artifact). The first PC and the second one (but to a less extent) represent
the dominant low frequency component of the ST–T segment; the third, fourth
and fifth contain more high frequency energy.

Following the extraction of principal components a noise reduction approach
is used to improve these coefficients. The utilization of an advanced wavelet
denoising technique has improved the classification results. The selected noise
reduction approach was based on soft thresholding [3]. We have chosen five levels
of wavelet decomposition and Daubechies–type wavelets.

3 The Classification Methodology

In this paper instead of constructing a global model for the pattern classification,
we construct several local models, for neighborhoods of the state space. For this
task, we use the novel k-windows clustering algorithm [4], to automatically detect
neighborhoods in the state space. This algorithm, with a slight modification
(unsupervised k-windows algorithm) has the ability to endogenously determine
the number of clusters present in the dataset during the clustering process. Once
the clustering process is complete, a trained FNN acts as the local predictor for
each cluster. In synopsis, the proposed methodology consists of the following
four steps:

1. Identify the clusters present in the training set.
2. For each cluster, train a different FNN using for training patterns, patterns

from this cluster solely.
3. Assign the patterns of the test set to the clusters according to their distance

from the center of the cluster.
4. Use the trained FNNs to obtain the classification scores on the test set.

The unsupervised k-windows algorithm generalizes the original algorithm [4].
Intuitively, the k-windows algorithm tries to place a d-dimensional window (box)
containing all patterns that belong to a single cluster; for all clusters present in
the dataset. At first, k points are selected (possibly in a random manner). The k
initial d-ranges (windows), of size a, have as centers these points. Subsequently,
the patterns that lie within each d-range are identified. Next, the mean of the
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Fig. 1. Left: Movements (solid lines) and enlargements (dashed lines). Right: The en-
largement process

patterns that lie within each d-range is calculated. The new position of the
d-range is such that its center coincides with the previously computed mean
value. The last two steps are repeatedly executed as long as the increase in
the number of patterns included in the d-range that results from this motion
satisfies a stopping criterion. The stopping criterion is determined by a variability
threshold θv that corresponds to the least change in the center of a d-range that
is acceptable to recenter the d-range (Figure 1, left).

Once movement is terminated, the d-ranges are enlarged in order to capture
as many patterns as possible from the cluster. Enlargement takes place at each
dimension separately. The d-ranges are enlarged by θe/l percent at each dimen-
sion, where θe is user defined, and l stands for the number of previous successful
enlargements. After the enlargement in one dimension is performed, the window
is moved, as described above. Once movement terminates, the proportional in-
crease in the number of patterns included in the window is calculated. If this
proportion does not exceed the user–defined coverage threshold, θc, the enlarge-
ment and movement steps are rejected and the position and size of the d-range
are reverted to their prior to enlargement values. Otherwise, the new size and
position are accepted. If enlargement is accepted for dimension d′ � 2, then for
all dimensions d′′, such that d′′ < d′, the enlargement process is performed again
assuming as initial position the current position of the window.

This process terminates if enlargement in any dimension does not result in a
proportional increase in the number of patterns included in the window beyond
the threshold θc (Figure 1, right). In the figure the window is initially enlarged
horizontally (E1). This enlargement is rejected since it does not produce an
increase in the number of patterns included. Next the window is enlarged
vertically, this enlargement is accepted, and the result of the subsequent
movements and enlargements is the initial window to become E2. The key idea
to automatically determine the number of clusters, is to apply the k-windows
algorithm using a sufficiently large number of initial windows. The windowing
technique of the k-windows algorithm allows for a large number of initial
windows to be examined, without any significant overhead in time complexity.
Once all the processes of movement and enlargement for all windows terminate,
all overlapping windows are considered for merging. The merge operation is
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Table 1. Percentages of correct classification on the test sets over 100 iterations

FNN Classification Performance
Test set E103 E104 E106 E107 E108 E111

RPROP
mean 75.60 86.63 59.78 79.07 73.95 92.19
std 0.39 0.96 2.20 2.48 1.13 2.28
max 76.21 88.87 66.04 85.76 75.85 94.55
min 74.76 84.34 57.58 73.67 71.57 87.51

iRPROP
mean 75.64 87.07 59.87 78.48 73.91 91.84
std 0.54 0.73 2.88 1.62 1.10 4.00
max 76.53 88.29 69.17 81.71 75.75 94.92
min 74.36 84.57 57.48 75.24 71.97 80.41

SCG
mean 77.46 85.77 62.51 79.07 73.57 92.45
std 0.77 0.80 4.74 2.13 1.61 1.49
max 79.05 87.09 71.15 84.38 76.16 94.77
min 75.76 83.64 58.54 72.61 69.62 89.82

BPVS
mean 72.50 84.29 67.94 83.28 70.00 93.91
std 0.02 0.45 0.17 0.07 0.007 0.03
max 72.57 85.27 68.08 83.34 70.01 93.99
min 72.49 84.06 67.72 83.17 69.99 93.86

AOBP
mean 73.69 83.83 71.68 83.10 69.67 93.21
std 0.59 0.09 0.00 0.01 0.005 0.30
max 73.88 83.91 71.68 83.14 69.67 93.86
min 71.93 83.72 71.68 83.10 69.64 93.05

guided by a merge threshold θm. Having identified two overlapping windows,
the number of patterns that lie in their intersection is calculated. Next the
proportion of this number to the total patterns included in each window is
calculated. If the mean of these two proportions exceeds θm, then the windows
are considered to belong to a single cluster and are merged.

4 Numerical Results

Numerical experiments were performed using a Clustering, and a Neural Net-
work, C++ Interface built under the Red Hat Linux 7.3 operating system using
the GNU compiler collection (gcc) version 3.2. The efficient supervised training
of FNNs is a subject of considerable ongoing research and numerous algorithms
have been proposed to this end. In this work, we consider the following neural
network training methods:

– Resilient Back Propagation (RPROP),
– Improved Resilient Back Propagation (iRPROP) [5],
– Scaled Conjugate Gradient (SCG),
– Adaptive On–Line Back Propagation (AOBP) [6],
– Back Propagation with Variable Stepsize(BPVS) [7],
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After extensive experimentation the network architecture selected consisted of
8 nodes in the first hidden layer, 7 nodes in the second hidden layer, and two
output nodes (5–8–7–2). All FNNs were trained for 300 epochs on the patterns
of the training set and subsequently their performance was evaluated on the
test sets. This process was repeated 100 times for all the training algorithms
considered. The classification capability of the trained FNNs with respect to the
accurate pattern classification in the test sets are reported in Table 1.

In the datasets E103, E104, and E108, FNNs trained with RPROP and iR-
PROP outperformed all other methods. The drawback of these two methods is
the relatively high standard deviation. SCG also suffers from the same drawb-
ack. The performance of RPROP and iRPROP on dataset E106 is discouraging.
For the remaining datasets FNNs trained with BPVS and AOBP, produced the
best results. A significant advantage of AOBP, and to an extent BPVS, is the
fact that the standard deviation of their performance is negligible. Overall, for
the datasets E104, E107 and E111, the classification ability of the proposed
methodology is very good.

5 Conclusions

This paper presents a methodology for automatic recognition of ischemic episo-
des, which draws from the disciplines of clustering and artificial neural networks.
The methodology consists of four stages. To effectively partition the state space,
the training patterns are subjected to clustering through the unsupervised k-
windows algorithm. Subsequently, a different FNN is trained on each cluster. At
the third stage, the patterns in the test set are assigned to the clusters identified
in the training set. Finally, the trained FNNs are used to classify each test pat-
tern. This methodology was applied to classify several test cases of the European
ST–T database and the obtained results were promising.
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