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Abstract. Generalizations of the traditional intermediate value theo-
rem are presented. The obtained generalized theorems are particular
useful for the existence of solutions of systems of nonlinear equations
in several variables as well as for the existence of fixed points of con-
tinuous functions. Based on the corresponding criteria for the existence
of a solution emanated by the intermediate value theorems, generalized
bisection methods for approximating fixed points and zeros of continuous
functions are given. These bisection methods require only algebraic signs
of the function values and are of major importance for tackling problems
with imprecise (not exactly known) information.
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1 Introduction

A system of n nonlinear equations in n real unknowns,

f1(x1, x2, . . . , xn) = 0,
f2(x1, x2, . . . , xn) = 0,

...
fn(x1, x2, . . . , xn) = 0,

(1)

may be represented in the real n-dimensional vector space R
n as follows:

Fn(x) = θn, (2)

where Fn = (f1, f2, . . . , fn) : D ⊂ R
n → R

n is a nonlinear mapping and θn =
(0, 0, . . . , 0) is the origin of Rn. The problem of solving the Eq. (2) is to find a
zero x∗ = (x∗

1, x
∗
2, . . . , x

∗
n) ∈ D for which Fn(x�) = θn. Similarly, the problem of

finding a fixed point of Fn in D ⊂ R
n is to find a point x� ∈ D which satisfies

the equation Fn(x�) = x�. Obviously, the problem of finding a fixed point is
equivalent to the problem of solving the Eq. (2) by considering the mapping
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Φn = In − Fn (where In indicates the identity mapping) instead of Fn and
solving the equation Φn(x) = θn, instead of the Eq. (2).

Many problems require solution of systems of equations for which Newton’s
method and the related class of algorithms [15] fail due to nonexistence of deriva-
tives or poorly behaved partial derivatives. Also, Newton’s method as well as
Newton’s-like methods often converge to a solution x∗ of Fn(x) = θn almost
independently of the initial guess, while Fn(x) = θn may have several solutions,
all of which are desired for the application [28]. Because of this reason, general-
ized bisection methods have been investigated. According to these methods one
establishes the existence of at least one solution of the Eq. (2) in a given domain
using a specific criterion for the existence of a solution. These kind of criteria can
be obtained using the conditions of various “existence theorems” (intermediate
value theorems). Once we have obtained a domain for which the criterion of the
existence is fulfilled, we are able to obtain upper and lower bounds for solution
values. To this end, by computing a sequence of bounded domains of decreasing
diameters, we are able to obtain a region with arbitrarily small diameter that
contains at least one solution of the Eq. (2).

These methods require only algebraic signs of the function values. The alge-
braic sign is the smallest amount of information (one bit of information) nec-
essary for the purpose needed. Thus, the methods that require only algebraic
signs are of major importance for tackling problems with imprecise (not exactly
known) information. This kind of problems occurs in various scientific fields
including mathematics, economics, engineering, computer science, biomedical
informatics, medicine and bioengineering, among others. This is so, because, in
a large variety of applications, precise function values are either impossible or
time consuming and computationally expensive to obtain. One such applica-
tion is provided in [28]. This application concerns the computation of all the
periodic orbits (stable and unstable) of any period and accuracy which occur,
among others, in the study of beam dynamics in circular particle accelerators
like the Large Hadron Collider (LHC) machine at the European Organization for
Nuclear Research (CERN). In this application, the method which is presented
in [24] and is implemented in [25] is used. Furthermore, these methods are par-
ticularly useful for tackling various problems where the corresponding functions
take very large and/or very small values.

2 Background Material

Notation 1. We denote by ϑA the boundary of a set A, by clA its closure, by
intA its interior, by card{A} its cardinality (i.e., the number of elements in the
set A) and by coA its convex hull (i.e., the set of all finite convex combinations
of elements of A).

Notation 2. We shall frequently use the index sets Nn = {0, 1, . . . , n}, Nn
¬0 =

{1, 2, . . . , n} and Nn
¬i = {0, 1, . . . , i − 1, i + 1, . . . , n}. Furthermore, for a given

set I = {i, j, . . . , �} ⊂ Nn we denote by Nn
¬I or equivalently by Nn

¬ij···� the set
{k ∈ Nn | k /∈ I}.
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Definition 1. For any positive integer n, and for any set of points V =
{υ0, υ1, . . . , υn} in some linear space which are affinely independent (i.e., the
vectors {υ1 − υ0, υ2 − υ0, . . . , υn − υ0} are linearly independent) the con-
vex hull co{υ0, υ1, . . . , υn} = [υ0, υ1, . . . , υn] is called the n-simplex with ver-
tices υ0, υ1, . . . , υn. For each subset of (m + 1) elements {ω0, ω1, . . . , ωm} ⊂
{υ0, υ1, . . . , υn}, the m-simplex [ω0, ω1, . . . , ωm] is called an m-face of
[υ0, υ1, . . . , υn]. In particular, 0-faces are vertices and 1-faces are edges. The
m-faces are also called facets of the n-simplex. An m-face of the n-simplex is
called the carrier of a point p if p lies on this m-face and not on any sub-face of
this m-face.

Notation 3. We denote the n-simplex with set of vertices V = {υ0, υ1, . . . , υn}
by σn = [υ0, υ1, . . . , υn]. Also, we denote the (n − 1)-simplex that determines
the i-th (n−1)-face of σn by σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn]. Furthermore,
for a given index set I = {i, j, . . . , �} ⊂ Nn with cardinality card{I} = κ, we
denote by σn

¬I or equivalently by σn
¬ij···� the (n − κ)-face of σn with vertices

υm,m ∈ Nn
¬I .

Definition 2 [23,26]. The diameter of an m-simplex σm in R
n, m � n, denoted

by diam(σm), is defined to be the length of the longest edge (1-face) of σm while
the microdiameter, μdiam(σm), of σm is defined to be the length of the shortest
edge of σm.

Definition 3. Let σm = [υ0, υ1, . . . , υm] be an m-simplex in R
n, m � n. Then

the barycenter of σm denoted by K is the point K = (m + 1)−1
∑m

i=0 υi in R
n.

Remark 1. By convexity it is obvious that the barycenter of any m-simplex σm

in R
n is a point in the relative interior of σm.

Definition 4. An n-simplex is oriented if an order has been assigned to its ver-
tices. If 〈υ0, υ1, . . . , υn〉 is an orientation of {υ0, υ1, . . . , υn} this is regarded as
being the same as any orientation obtained from it by an even permutation of the
vertices and as the opposite of any orientation obtained by an odd permutation
of the vertices. We shall denote oriented n-simplices by σn = 〈υ0, υ1, . . . , υn〉,
and we shall write, for example, 〈υ0, υ1, υ2, . . . , υn〉 = −〈υ1, υ0, υ2, . . . , υn〉 =
〈υ2, υ0, υ1, . . . , υn〉. The boundary ϑσn of an oriented n-simplex σn =
〈υ0, υ1, . . . , υn〉 is given by ϑσn =

∑n
i=0 (−1)i〈υ0, υ1, . . . , υi−1, υi+1, . . . , υn〉.

The oriented (n − 1)-simplex 〈υ0, υ1, . . . , υi−1, υi+1, . . . , υn〉 will be called the
ith face of σn.

Definition 5. An n-dimensional polyhedron Πn is a union of a finite number of
oriented n-simplices σn

i , i = 1, 2, . . . , k such that the σn
i have pairwise-disjoint

interiors. We write Πn =
∑k

i=1 σn
i and ϑΠn =

∑k
i=1 ϑσn

i .

Definition 6. Let ψ ∈ R, then the sign (or signum) function, denoted by sgn,
maps ψ to the set {−1, 0, 1} as follows:

sgnψ =

⎧
⎨

⎩

−1, if ψ < 0,
0, if ψ = 0,
1, if ψ > 0.

(3)
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Furthermore, for any a = (a1, a2, . . . , an) ∈ R
n the sign of a, denoted sgna, is

defined as sgna = (sgna1, sgna2, . . . , sgnan) .

3 Bolzano Intermediate Value Theorem

The fundamental and pioneering Bolzano’s theorem states the following [2,7]:

Theorem 1 (Bolzano’s theorem). If f : [a, b] ⊂ R → R is a continuous func-
tion and if it holds that f(a)f(b) < 0, then there is at least one x ∈ (a, b) such
that f(x) = 0.

This theorem is also called intermediate value theorem since it can be easily
formulated as follows:

Theorem 2 (Bolzano’s intermediate value theorem). If f : [a, b] ⊂ R → R

is a continuous function and if y0 is a real number such that:

min{f(a), f(b)} < y0 < max{f(a), f(b)},

then there is at least one x0 ∈ (a, b) such that f(x0) = y0.

Remark 2. Obviously, Theorem 2 can be deduced from Theorem 1 by considering
the function g(x) = f(x) − y0.

Remark 3. The first proofs of the above theorem, given independently by
Bolzano in 1817 [2] and Cauchy in 1821 [4], were crucial in the procedure of
arithmetization of analysis, which was a research program in the foundations of
mathematics during the second half of the 19th century.

Based on the hypotheses of Theorem 1, a simple and very useful criterion
for the existence of a zero of a continuous mapping f : [a, b] ⊂ R → R in some
interval (a, b) is the following Bolzano’s existence criterion:

f(a) f(b) < 0, (4)

or equivalently:
sgn f(a) sgn f(b) = −1, (5)

where sgn denotes the sign function (3).

Remark 4. The Bolzano existence criterion is well-known and widely used and
it can be generalized to higher dimensions, see [27,30] (cf. Sects. 4 and 5). Note
that when the condition (4) (or the condition (5)) is not fulfilled, then in the
interval (a, b) either no zero exists or there are zeros for which the sum of their
multiplicities is an even number (e.g., two simple zeros, one double and two
simple zeros, one triple and one simple zeros etc.).
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The well-know and widely applied bisection method is based on the Bolzano
existence criterion in order to approximate a zero of a continuous function f :
[a, b] ⊂ R → R in a given interval (a, b). A simplified version described in [24] is
the following:

xp+1 = xp + c sgn f(xp) / 2p+1, p = 0, 1, . . . , (6)

where x0 = a and c = sgnf(a) (b − a). Instead of the iterative formula (6) we
can also use the following [24]:

xp+1 = xp − ĉ sgn f(xp) / 2p+1, p = 0, 1, . . . , (7)

where x0 = b and ĉ = sgn f(b) (b − a).
The sequences (6) and (7) converge with certainty to a zero r ∈ (a, b) if for

some xp it holds that:

sgnf(x0) sgnf(xp) = −1, for p = 1, 2, . . . .

Furthermore, the number of iterations ν required to obtain an approximate
zero r∗ such that |r − r∗| � ε for some ε ∈ (0, 1) is given by:

ν =
⌈
log2(b − a) ε−1

⌉
, (8)

where �x� = ceil(x) denotes the ceiling function that maps a real number x to
the least integer greater than or equal to x.

Remark 5. The reasons for choosing the iterative schemes (6) and (7) are that:

1. They converge with certainty within the given interval (a, b).
2. They are globally convergent methods in the sense that they converge to a

zero from remote initial guesses.
3. Using the relation (8) we may predetermine the number of iterations that are

required for the attainment of an approximate zero to a given accuracy.
4. They have a great advantage since they are worst-case optimal. That is, they

possess asymptotically the best possible rate of convergence in the worst
case [20]. This means that they are guaranteed to converge within the prede-
fined number of iterations, and, moreover, no other method has this important
property.

5. They require only the algebraic signs of the function values to be computed,
as is evident from (6) and (7); thus they can be applied to problems with
imprecise function values.

For applications of the iterative schemes (6) and (7) we refer the interested
reader, among others, to [5,8,9,34,35].
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4 Bolzano-Poincaré-Miranda Intermediate
Value Theorem

A straightforward generalization of Bolzano’s intermediate value theorem to
continuous mappings of an n-cube (parallelotope) into R

n was proposed (with-
out proof) by Poincaré in 1883 and 1884 in his work on the three body prob-
lem [16,17]. This theorem, now known as Bolzano-Poincaré-Miranda theorem,
states that [13,22,27]:

Theorem 3 (Bolzano - Poincaré -Miranda theorem). Suppose that P ={
x ∈ R

n | |xi| < L, for 1 � i � n
}

and let the mapping Fn =
(f1, f2, . . . , fn) : P → R

n be continuous on the closure of P such that Fn(x) 	=
θn = (0, 0, . . . , 0) for x on the boundary of P , and

(a) fi(x1, x2, . . . , xi−1,−L, xi+1, . . . , xn) � 0, for 1 � i � n,
(b) fi(x1, x2, . . . , xi−1,+L, xi+1, . . . , xn) � 0, for 1 � i � n.

Then, there is at least one x ∈ P such that Fn(x) = θn.

Theorem 3 it has come to be known as “Miranda’s theorem” since in 1940
Miranda [13] proved that it is equivalent to the traditional Brouwer fixed point
theorem [3]. It is worthy to mention that the Bolzano-Poincaré-Miranda theorem
is closely related to important theorems in analysis and topology and constitutes
an invaluable tool for verified solutions of numerical problems by means of inter-
val arithmetic. For a short proof and a generalization of the Bolzano-Poincaré-
Miranda theorem using topological degree theory we refer the interested reader
to [27]. In addition, for generalizations with respect to an arbitrary basis of Rn

that eliminate the dependence of the Bolzano-Poincaré-Miranda theorem on the
standard basis of R

n see [6,27]. For various interesting relations between the
theorems of Bolzano-Poincaré-Miranda, Borsuk, Kantorovich and Smale with
respect to the existence of a solution of a system of nonlinear equations, we refer
the interested reader to [1].

The conditions of the Bolzano-Poincaré-Miranda theorem give an invaluable
existence criterion for a solution of the Eq. (2) where Fn = (f1, f2, . . . , fn) : P ⊂
R

n → R
n is continuous.

Remark 6. Similarly to Bolzano’s criterion, the Bolzano - Poincaré - Miranda cri-
terion requires only the algebraic sings of the function values to be computed
on the boundary of the n-cube P . On the other hand, for general continuous
functions, in contrary to Bolzano’s criterion, the hypotheses (a) and (b) are not
always fulfilled or it is impossible to be verified for a given n-cube P .

Next, the characteristic polyhedron criterion and the characteristic bisec-
tion method are briefly presented. These approaches, in contrary to Bolzano -
Poincaré - Miranda criterion require only the algebraic sings of the function val-
ues to be computed on the vertices of the considered polyhedron.

There are various generalized bisection methods that require the compu-
tation of the topological degree in order to localize a solution of the Eq. (2)
(see, e.g., [11,23]). We shall allow us to briefly discuss a few basic concepts
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regarding topological degree theory. To this end, suppose that a function
Fn = (f1, f2, . . . , fn) : clDn ⊂ R

n → R
n is defined and twice continuously differ-

entiable in an open and bounded domain Dn of Rn with boundary ϑ Dn. Suppose
further that the solutions of the equation Fn(x) = p, where p ∈ R

n is a given
vector, are not located on ϑ Dn, and that they are simple, i.e., the determinant,
det JFn

, of the Jacobian matrix of Fn at these solutions is non-zero.

Definition 7. The topological degree of Fn at p relative to Dn is denoted by
deg[Fn,Dn, p] and is defined by the following sum:

deg[Fn,Dn, p] =
∑

x∈F−1
n (p)∩Dn

sgn det JFn
(x), (9)

where sgn denotes the sign function (3).

Remark 7. The topological degree can be generalized when the function is only
continuous [15]. Furthermore, if Dn = D1

n ∪ D2
n where D1

n and D2
n have disjoint

interiors and Fn(x) 	= θn for all x ∈ ϑD1
n ∪ ϑD2

n, then the topological degree is
additive, i.e.:

deg[Fn,Dn, θn] = deg[Fn,D1
n, θn] + deg[Fn,D2

n, θn]. (10)

The topological degree is invariant under changes of the vector p in the sense
that, if q ∈ R

n is any vector, then it holds that [15]:

deg[Fn,Dn, p] ≡ deg[Fn − q,Dn, p − q],

where Fn − q denotes the mapping Fn(x) − q, x ∈ Dn. Thus, for simplicity
reason, we consider the case where the topological degree is defined at the origin
θn = (0, 0, . . . , 0) in R

n.

The topological degree deg[Fn,Dn, θn] can be represented by the Kronecker
integral which is defined as follows:

deg[Fn,Dn, θn] =
Γ (n/2)
2πn/2

∫ ∫

ϑDn

· · ·
∫ ∑n

i=1 Aidx1 · · · dxi−1dxi+1 · · · dxn
(
f1

2 + f2
2 + · · · + fn

2
)n/2

, (11)

where Γ denotes the gamma function and Ai define the following determinants:

Ai = (−1)n(i−1) det
[

Fn
∂Fn

∂x1
· · · ∂Fn

∂xi−1

∂Fn

∂xi+1
· · · ∂Fn

∂xn

]

,

where ∂Fn

∂xk
=
(

∂f1
∂xk

, ∂f2
∂xk

, . . . , ∂fn

∂xk

)
is the kth column of the determinant detJFn

of the Jacobian matrix JFn
.

The important Kronecker’s theorem [15] states that the equation Fn(x) = θn

has at least one zero in Dn if deg[Fn,Dn, θn] 	= 0. To this end, several methods
for the computation of the topological degree have been proposed in the past
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few years (see, e.g., [11,22]). One such method is the fundamental and pioneer-
ing Stenger’s method [22] that in some classes of functions is an almost optimal
complexity algorithm (see, e.g., [14,20,22]). The accurate computation of topo-
logical degree using Stenger’s or other related methods [11], is based on suitable
assumptions, including appropriate representation of the boundary of Dn. Specif-
ically, if the boundary of Dn can be “sufficiently refined” then Stenger’s method
gives the value of the topological degree.

Definition 8 [11,22,33]. Let Πn be an n-polyhedron. Let Fn = (f1, f2, . . . ,
fn) : Πn ⊂ R

n → R
n be continuous with θn /∈ Fn(ϑΠn). If n = 1, ϑΠ1 is said

to be sufficiently refined relative to sgn F1, if 0 /∈ F1(ϑΠ1). If n > 1, ϑΠn is
said to be sufficiently refined relative to sgnFn, if ϑΠn has been subdivided so
that it may be written as a union of a finite number of (n − 1)-dimensional
regions Qn−1

1 , Qn−1
2 , . . . , Qn−1

m , each consisting of a union of a finite number of
(n − 1)-simplices with pairwise disjoint (n − 1)-dimensional interiors and having
the following properties:

(a) the interiors of the Qn−1
i are pairwise disjoint and each Qn−1

i is connected;
(b) for each region Qn−1

i , there exists at least one component of Fn, (for example
fri

), that does not vanish on it;
(c) if fri

	= 0 on Qn−1
i , then ϑQn−1

i is sufficiently refined relative to sgn F ri
n−1

where F ri
n−1 =

(
f1, f2, . . . , fri−1, fri+1, . . . , fn

)
.

As we have already mentioned previously, once we have obtained a domain
for which the value of the topological degree relative to this domain is nonzero,
we are able to obtain upper and lower bounds for solution values. To this end,
by computing a sequence of bounded domains with nonzero values of topological
degree and decreasing diameters, we are able to obtain a region with arbitrar-
ily small diameter that contains at least one solution of the Eq. (2). However,
although the nonzero value of topological degree plays an important role in the
existence of a solution of the Eq. (2), the computation of this value is a time-
consuming procedure. The bisection method, on the other hand, which is briefly
described below, avoids all calculations concerning the topological degree by
implementing the concept of the characteristic n-polyhedron criterion for the
existence of a solution of the Eq. (2) within a given bounded domain. This crite-
rion is based on the construction of a characteristic n-polyhedron [24,25,33]. To
define a characteristic n-polyhedron (n-dimensional convex polyhedron) we con-
struct the n-complete 2n × n matrix Mn whose rows are formed by all possible
combinations of −1 and 1. To this end we compute the n-binary 2n × n matrix
M∗

n =
[
e∗
ij

]2n,n

i,j=1
where e∗

ij is the jth digit of the n-digit binary representation
of the number (i − 1) counting the left-most digit first. Then the elements of
Mn =

[
eij

]2n,n

i,j=1
are given by eij = 2e∗

ij − 1.
Suppose now that Πn = 〈V1, V2, . . . , V2n〉 is an oriented (i.e., an orientation

has been assigned to its vertices) n-dimensional convex polyhedron with 2n ver-
tices, Vi ∈ R

n, and let Fn = (f1, f2, . . . , fn) : Πn ⊂ R
n → R

n be a continuous
mapping. Then,
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Definition 9. The 2n × n matrix S(Fn; Πn) whose entries in the k-th row are
the corresponding coordinates of the vector:

sgn Fn(Vk) =
(
sgn f1(Vk), sgn f2(Vk), . . . , sgn fn(Vk)

)
, (12)

will be called matrix of signs associated with Fn and Πn, where sgn ψ defines
the sign function (3).

Definition 10. An n-polyhedron Πn is called characteristic n-polyhedron rela-
tive to Fn, iff the matrix S (Fn; Πn) is identical with the matrix Mn, after some
permutation of its rows.

Definition 11. A polyhedron which is a convex hull of 2n−1 vertices of a char-
acteristic n-polyhedron Πn relative to Fn, will be called r-side of Πn and will
be noted by Pr, r = 1, 2, . . . , n iff for all its vertices Vk, k = 1, 2, . . . , 2n−1 the
corresponding vectors sgn Fn(Vk) have their r-th coordinate equal to each other.
Moreover, if this common r-th element is −1 or 1 then the Pr will be called
negative or positive r-side correspondingly.

Lemma 1 [33]. In each characteristic n-polyhedron relative to Fn there are n
positive and n negative sides. Moreover, each side Pr of a characteristic n-
polyhedron Πn relative to Fn = (f1, f2, . . . , fn) : Πn ⊂ R

n → R
n is itself a char-

acteristic (n − 1)-polyhedron relative to F r
n−1 = (f1, f2, . . . , fr−1, fr+1, . . . , fn) :

Pr → R
n−1.

If the boundary ϑΠn of a characteristic polyhedron Πn can be sufficiently
refined then there is (at least) one zero within Πn. More specifically, the following
theorem holds:

Theorem 4 [33]. Let V = 〈Vi〉2ni=1 and P = {Pi}2n
i=1 be the ordered set of vertices

and the set of the sides, respectively, of a characteristic n-polyhedron Πn relative
to continuous Fn : Πn ⊂ R

n → R
n for which θn /∈ Fn(ϑΠn). Suppose that

S = {Si,j}2n
i=1,

ji
j=1 is a finite set of (n − 1)-dimensional oriented simplices which

lie on ϑΠn with the following properties:

(a) ϑΠn =
∑2n

i=1

∑ji
j=1 Si,j,

(b) the interiors of the members of S are disjoint,
(c) these simplices make ϑΠn sufficiently refined relative to sgn (Fn), and
(d) the vertices of each simplex Si,j are a subset of vertices of Pi.

Then, it holds that deg[Fn,Πn, θn] = ±1.

Remark 8. The above result implies the existence of at least one solution of
the Eq. (2) within Πn. For more details on how to construct a characteristic
n-polyhedron and locate a desired solution see [24,25,28]. The characteristic
polyhedron can be considered as a translation of the Poincaré-Miranda hyper-
cube [22,27].
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Next, we describe a generalized bisection method. This method combined
with the above mentioned criterion, produces a sequence of characteristic poly-
hedra of decreasing size always containing the desired solution. We call it Char-
acteristic Bisection. This version of bisection does not require the computation
of the topological degree at each step, as others do [11,23]. It can be applied to
problems with imprecise function values, since it depends only on their signs.
The method simply amounts to constructing another refined characteristic poly-
hedron, by bisecting a known one, say Πn. To do this, we compute the mid-
point M of the longest edge 〈Vi, Vj〉, of Πn (where the distances are measured
in Euclidean norms). Then we obtain another characteristic polyhedron, Πn

∗ , by
comparing the sign, sgnFn(M), of Fn(M) with that of Fn(Vi) and Fn(Vj) and
substituting M for that vertex for which the signs are identical [24,25,28]. Then
we select the longest edge of Πn

∗ and continue the above process. If the assump-
tions of Theorem 4 are satisfied, one of the sgnFn(Vi), sgnFn(Vj) coincides with
sgnFn(M), otherwise, we continue with another edge.

Theorem 5 [33]. Let Πn be a characteristic n-polyhedron whose longest edge
length is Δ(Πn). Then, the minimum number ζ of bisections of the edges of Πn

required to obtain a characteristic polyhedron Πn
∗ whose longest edge length sat-

isfies Δ(Πn
∗ ) � ε, for some accuracy ε ∈ (0, 1), is given by

ζ =
⌈
log2

(
Δ(Πn) ε−1

)⌉
. (13)

Remark 9. Notice that ζ is independent of the dimension n and that the bisection
algorithm has the same number of iterations as the bisection in one-dimension
which is optimal and possesses asymptotically the best rate of convergence [19].

5 Intermediate Value Theorem for Simplices

In [30] the intermediate value theorem for simplices is proposed. The obtained
proof is based on the Knaster-Kuratowski-Mazurkiewicz covering principle [12]
(cf. Lemma 2 below). Also, in [31] two short proofs of this theorem are given
which are based on Sperner covering principles (cf. Lemmas 3 and 4 below).

Lemma 2 (Knaster-Kuratowski-Mazurkiewicz (KKM Lemma)). Let
Ci, i ∈ Nn = {0, 1, . . . , n} be a family of (n + 1) closed subsets of an n-simplex
σn = [υ0, υ1, . . . , υn] in R

n satisfying the following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) For each ∅ 	= I ⊂ Nn it holds that

⋂
i∈I σn

¬i ⊂ ⋃
j∈Nn

¬I
Cj .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

Remark 10. It is worthy to mention that, the three fundamental and pioneer-
ing classical results, namely, the Brouwer fixed point theorem [3], the Sperner
lemma [21], and the KKM lemma [12] are mutually equivalent in the sense that
each one can be deduced from another. Furthermore, Scarf proposed a method
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for approximating a fixed point of a continuous function from a unit simplex
into itself [18]. This approach is considered as the first constructive proof to
Brouwer’s fixed point theorem. Scarf’s method is based on a simplicial subdivi-
sion (triangulation) of the given simplex and it uses a labeling of the vertices of
the simplicial subdivision.

Definition 12. A system (family) of subsets of a set A whose union is A is called
a covering of A. The order of a finite system of sets is the greatest integer k for
which the system has k elements with nonempty intersection. A system of sets
is said to be simple if every two elements of the system are distinct. A covering
is called an ε-covering if the finite system of sets of this covering are of diameter
less than ε > 0.

A similar to KKM covering principle was proposed by Sperner [21]:

Lemma 3 (Sperner covering principle). Let Ci, i ∈ Nn be a family of
(n + 1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying the
following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) σn

¬i ∩ Ci = ∅, ∀ i ∈ Nn .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

A similar result is the following:

Lemma 4 (Sperner covering principle). Let Ci, i ∈ Nn be a family of
(n + 1) closed subsets of an n-simplex σn = [υ0, υ1, . . . , υn] in R

n satisfying the
following hypotheses:

(a) σn =
⋃

i∈Nn Ci and
(b) σn

¬i ⊂ Ci , ∀ i ∈ Nn .

Then, it holds that
⋂

i∈Nn Ci 	= ∅.

Next, we give the intermediate value theorem for simplices [30].

Theorem 6 (Intermediate value theorem for simplices [30]). Assume that
σn = [υ0, υ1, . . . , υn] is an n-simplex in R

n. Let Fn = (f1, f2, . . . , fn) : σn → R
n

be a continuous function such that fj(υi) 	= 0, ∀ j ∈ Nn
¬0 = {1, 2, . . . , n}, i ∈

Nn = {0, 1, . . . , n} and θn = (0, 0, . . . , 0) /∈ Fn(ϑσn) (i.e. Fn does not vanish
on the boundary ϑσn of σn). Assume that the vertices υi, i ∈ Nn are reordered
such that the following hypotheses are fulfilled:

(a) sgnfj(υj) sgnfj(x) = −1, ∀x ∈ σn
¬j , j ∈ Nn

¬0 , (14)

(b) sgnFn(υ0) 	= sgnFn(x), ∀x ∈ σn
¬0 , (15)

where sgnFn(x) =
(
sgnf1(x), sgnf2(x), . . . , sgnfn(x)

)
and σn

¬i denotes the face
opposite to vertex υi. Then, there is at least one point x ∈ intσn such that
Fn(x) = θn.
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Remark 11. The only computable information required by the hypotheses (14)
and (15) of Theorem 6 is the algebraic sign of the function values on the boundary
of the n-simplex σn. Thus, Theorem 6 is applicable whenever the signs of the
function values are computed correctly. Theorem 6 has been applied for the
localization and approximation of fixed points and zeros of continuous mappings
using a simplicial subdivision of a simplex [31].

Next, we present a generalized method of bisection for simplices.

Definition 13 [10]. Let σm
0 = 〈υ0, υ1, . . . , υm〉 be an oriented m-simplex in R

n,
m � n, suppose that 〈υi, υj〉 is the longest edge of σm

0 and let Υ = (υi +υj)/2 be
the midpoint of 〈υi, υj〉. Then the bisection of σm

0 is the order pair of m-simplices
〈σm

10, σ
m
11〉 where:

σm
10 = 〈υ0, υ1, . . . , υi−1, Υ, υi+1, . . . , υj , . . . , υm〉,

σm
11 = 〈υ0, υ1, . . . , υi, . . . , υj−1, Υ, υj+1, . . . , υm〉.

The m-simplices σm
10 and σm

11 will be called lower simplex and upper simplex
respectively corresponding to σm

0 while both σm
10 and σm

11 will be called elements
of the bisection of σm

0 . Suppose that σn
0 = 〈υ0, υ1, . . . , υn〉 is an oriented n-

simplex in R
n which includes at least one solution of the Eq. (2). Suppose further

that 〈σn
10, σ

n
11〉 is the bisection of σn

0 and that there is at least one root of the
system (2) in some of its elements. Then this element will be called selected n-
simplex produced after one bisection of σn

0 and it will be denoted by σn
1 . Moreover

if there is at least one solution of the system (2) in both elements, then the
selected n-simplex will be the lower simplex corresponding to σn

0 . Suppose now
that the bisection is applied with σn

1 replacing σn
0 giving thus the σn

2 . Suppose
further that this process continues for p iterations. Then we call σn

p the selected
n-simplex produced after p iterations of the bisection of σn

0 .

Theorem 7 [23]. Suppose that σm = [υ0, υ1, . . . , υm] is an m-simplex in R
n,

m � n. Let K be the barycenter of σm and let Ki be the barycenter of the i-th
face σm

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υm] of σm then the following relationships
hold for all 0 � i � m,

(a) The points υi, K and Ki are collinear points,

(b) ‖K − υi‖2 =
m

m + 1

⎛

⎜
⎜
⎝

1
m

m∑

j=0
j �=i

‖υi − υj‖22 − 1
m2

m−1∑

p=0
p�=i

m∑

q=p+1
q �=i

‖υp − υq‖22

⎞

⎟
⎟
⎠

1/2

,

(c) ‖K − Ki‖2 = m−1‖K − υi‖2.
Definition 14 [26]. The barycentric radius β(σm) of an m-simplex σm in R

n is
the radius of the smallest ball centered at the barycenter of σm and containing
the simplex. The barycentric radius β(A) of a subset A of Rn is the supremum
of the barycentric radii of simplices with vertices in A.
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Remark 12. The length of the barycentric radius β(σm) of an m-simplex σm

in R
n, m � n, is maxi ‖K − υi‖2.

Theorem 8 [26]. Any m-simplex σm = [υ0, υ1, . . . , υm] in R
n, m � n is enclos-

able by the spherical surface Sm−1
β with radius β(σm) given by:

β(σm) =
1

m + 1
max

i

⎛

⎜
⎜
⎝m

m∑

j=0
j �=i

‖υi − υj‖22 −
m−1∑

p=0
p�=i

m∑

q=p+1
q �=i

‖υp − υq‖22

⎞

⎟
⎟
⎠

1/2

.

Remark 13. The barycentric radius β(σn) of a n-simplex σn in R
n can be

used to estimate error bounds for approximate fixed points or approximate
roots of mappings in R

n, by approximating a fixed point or a root by the
barycenter of σn. Note that the computation of β(σn) requires only the lengths
of the edges of σn, which are also required in order to compute the diame-
ter diam(σn) of σn. Furthermore, since the distance of the barycenter K of
an n-simplex σn = [υ0, υ1, . . . , υn] in R

n from the barycenter Ki of the i-
th face σn

¬i = [υ0, υ1, . . . , υi−1, υi+1, . . . , υn] of σn is equal to ‖K − υi‖2/n
[23,26], then using Theorem 8 we can easily compute the value of γ(σn) =
mini ‖K − Ki‖2/diam(σn). The value γ(σn) can be used to estimate the thick-
ness θ(σn) of σn, that is:

θ(σn) = min
i

{

min
x∈σn

¬i

∥
∥K − x

∥
∥
2

}

/diam(σn).

In general, the thickness θ(σn) is important to piecewise linear approximations
of smooth mappings and, in general, to simplicial and continuation methods for
approximating fixed points or roots of systems of nonlinear equations.

Theorem 9 [10]. Suppose that σm
0 is an m-simplex in R

n and let σm
p be any

m-simplex produced after p bisections of σm
0 . Then

diam(σm
p ) �

(√
3/2

)�p/m�
diam(σm

0 ), (16)

where diam(σm
p ) and diam(σm

0 ) are the diameters of σm
p and σm

0 respectively and
�p/m� is the largest integer less than or equal to p/m.

Theorem 10 [23,29]. Suppose that σm
0 , σm

p , diam(σm
0 ) and diam(σm

p ) are as in
Theorem 9 and let Km

p be the barycenter of σm
p . Then for any point T in σm

p the
following relationship is valid

‖T − Km
p ‖2 � m

m + 1

(√
3/2

)�p/m�
diam(σm

0 ). (17)

Definition 15. Let σn be an n-simplex in R
n and let diam(σn) and μdiam(σn)

be the diameter and the microdiameter of σn respectively. Suppose that r is a
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solution of the Eq. (2) in σn. Then we define the barycenter Kn of σn to be an
approximation of r and the quantity

ε(σn) =
n

n + 1

(
(
diam(σn)

)2 − n − 1
2n

(
μdiam(σn)

)2
)1/2

, (18)

to be an error estimate for Kn.

Theorem 11 [23,29]. Suppose that σn
p is the selected n-simplex produced after

p bisections of an n-simplex σn
0 in R

n. Let r be a solution of the Eq. (2) which is
included in σn

p and that Kn
p and ε(σn

p ) are the approximation of r and the error
estimate for Kn

p respectively. Then the following hold:

(a) ε(σn
p ) � n

n + 1

(√
3/2

)�p/n�
diam(σn

0 ),

(b) ε(σn
p ) �

(√
3/2

)�p/n�
ε(σn

0 ),
(c) lim

p→∞ εp = 0,

(d) lim
p→∞ Kn

p = r.

6 Synopsis

The paper presents, among some new results, an overview on generalizations
of the intermediate value theorem for approximating fixed points and zeros of
continuous functions. The presented generalized theorems are particular useful
for the existence of solutions of systems of nonlinear equations in several vari-
ables as well as for the existence of fixed points of continuous functions. Based
on the corresponding criteria for the existence of a solution emanated by the
intermediate value theorems, generalized bisection methods for approximating
fixed points and zeros of continuous functions are given. These bisection methods
require only algebraic signs of the function values and are of major importance
for tackling problems with imprecise (not exactly known) information.

Acknowledgment. The author would like to thank the anonymous reviewers for their
helpful comments.
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