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The main characteristic of a granular gas, which makes it fundamentally different from ordinary molecular gases, is
its tendency to form clusters, i.e. to spontaneously separate into dense and dilute regions. This can be interpreted as a
separation in cold and hot regions, meaning that Maxwell’s demon is at work: this demon – notoriously powerless in
any system in thermodynamic equilibrium – makes clever use of the non-equilibrium state of affairs that reigns in a
granular gas, with on the one hand an external energy source and on the other a continuous loss of energy due to the
inelastic particle collisions.
We focus on vibrated compartmentalised systems, because these give a particularly clear-cut view of the clustering

process and also because they resemble the typical machinery used in industrial applications to sort and transport
granular materials. We discuss how the clustering can be exploited to build a Brownian motor, a fountain, a granular
clock, and how it gives insight into a related clustering problem of prime importance in modern society, namely the
formation of traffic jams.
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1. Introduction: why does granular matter matter?

Granular, grain-like matter is all around us. We meet it
in our daily lives when we pour sugar, stir coals or
walk on a gravel path, and the industrial applications
involving this type of matter are so ubiquitous that
they use up an awe-inspiring 10% of the energy budget
worldwide [1,2]. It has also been estimated that no less
than half of this energy could be saved if our
understanding of granular matter were more complete
[3]: notwithstanding our familiarity with the more
practical aspects of grainy materials, on the funda-
mental side much is still unknown. With the exception
of pioneers like Chladni, Faraday, Reynolds, Hagen,
and Bagnold [4–6], physicists were not seriously
interested in granular matter until about 20 years
ago. Since then, however, it has rapidly become one of
the most active branches of physics and new discov-
eries are being made every day.

Just like ordinary molecular matter, granular matter
comes in at least three phases: solid (e.g. a sand castle,
Figure 1(a)), liquid (the flowing sand in an hourglass,
Figure 1(b)), and gaseous (as in a desert dust devil,
Figure 1(c)). One also encounters phases that look
intermediate between solid and liquid, or between liquid
and gas. Despite the superficial similarities, however,
granular solids, liquids, and gases differ radically from
their molecular counterparts [1]. Used as we are to
ordinary matter, we find their behaviour often

counterintuitive. For instance, granular solids often
dilate – instead of being compressed – under external
pressure or shear.This is due to the fact that the increased
pressure disturbs the close-packed arrangement of the
grains, forcing them into another arrangement, which
usually happens to be a less dense one. It was Osborne
Reynolds who first thought of this in 1885, when he was
walking along the seaside and wondered why the sand
made a white ring around his footprints. He correctly
attributed this to the widening voids between the grains,
through which the water could drain away with more
ease, thus making the sand drier and whiter.

Granular liquids are also special. Take for instance
the sand in an hourglass, which flows always at the
same rate, irrespective of whether the upper vessel is
well-filled or nearly empty.1 For a water clock, by
contrast, the flow steadily slows down as the water
level in the upper vessel (and hence the hydrostatic
pressure at the orifice) decreases. The sand hardly
builds up any hydrostatic pressure, since the gravita-
tional force is being re-directed towards the sides of the
hourglass via the erratic lines of contact (known as
force chains) between the grains.

One of the most distinctive properties of granular
gases is their tendency to cluster [7–12]. Any ordinary
gas will spread over the whole volume of the container
in which it is held, but a granular gas does exactly the
opposite: it forms clusters, i.e. it spontaneously
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separates into dense and dilute regions (see Figure 2).
This property, which can be traced back to the fact
that the collisions between the grains are inelastic, is
the central topic of the present review. We will
concentrate on the formation of clusters in compart-
mentalised granular gases. These systems give us a
particularly transparent view of the clustering process,
and apart from this they also have a direct bearing on
the multitude of compartmentalised systems found in
industry, such as sorting machines, mixers, and
conveyor belts, for which clustering is known to be a
major and very costly source of problems [1,2].

The fact that driven granular systems are so widely
studied today is due in part to their attractively
surprising behaviour, and to their relevance for
industrial applications, but there is more to it than
that: they are prime examples of many-particle systems

far from thermodynamic equilibrium, renowned for
their rich phenomenology and complex dynamical
properties. In such systems, the balance between
energy input on the one side and dissipation on the
other is known to give rise to spontaneous pattern
formation [13]. Typical instances are the hexagonal
convection cells in a pan of oil heated from below
(Rayleigh–Bénard cells) [14], the sand ripples along the
beach formed by the to-and-fro motion of the sea
water [15], or – as we shall see – the spontaneous
formation of clusters in granular gases. In the present
review we ignore the influence of the medium
surrounding the particles. For the systems we will be
dealing with (glass or metal beads with a typical
diameter of several millimetres, moving in air at
atmospheric pressure) this is a fair approximation,2

but it excludes fascinating granular phenomena like the

Figure 1. Granular matter as a solid, a liquid, or a gas: (a) sand castle, (b) hourglass, and (c) dust devil. A dust devil is a whirlwind
caused by intense heating of the desert surface. The hot air swirls upwards, carrying fine particles of dust and sand with it.

Figure 2. The Maxwell demon experiment: (a) at vigorous shaking the particles (glass beads of diameter 4 mm) spread evenly
over the two compartments. (b,c) When the shaking strength is reduced below a critical level, the particles spontaneously form a
cluster in one compartment, leaving the other one almost empty. Note that the particles in the dilute compartment jump higher
(i.e. the granular temperature Tg is higher) than in the well-filled compartment. The height of the wall is 60 mm.
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dust devil of Figure 1(c), barchan dunes marching
through arid deserts with unidirectional winds (on
Earth as well as on Mars and Venus) [6],3 or the
appearance of Faraday heaps in a layer of powder on a
vibrating table [5,18,19].

Granular systems are intrinsically noisy, since the
phenomena they display typically involve much fewer
than the 1023 particles of standard statistical physics.
This means that statistical fluctuations are not
drowned by the law of large numbers, but may in
fact play a decisive role in the behaviour of the
system.4 Granular systems are therefore uniquely
suited to study the role of statistical fluctuations in
non-equilibrium systems.

The paper is organised as follows: Section 2
describes the Maxwell Demon experiment, which shows
the clustering in its most clear-cut form in a
setup consisting of two connected compartments (see
Figure 2). Section 3 then deals with the theoretical
description of the clustering process. This description is
based on granular hydrodynamics and yields a flux
function that quantitatively captures the flow of particles
between the two compartments. Section 4 is about the
generalisation of the Maxwell demon experiment to
three or more compartments, which introduces intri-
guing new features: the transition from the uniform
particle distribution to the clustered state now turns out
to be hysteretic, and does not occur in one single step
but is instead a slow coarsening process involving long-
lived transient states. In Section 5 we discuss how the
clustering effect can be exploited to extract useful work
from the granular gas. By making a small adjustment to
every second compartment, we induce a directed motion
through the system, which thus becomes a Brownian
motor. Section 6 deals with another interesting variation
of the Maxwell Demon experiment: if the granular
particles are not all identical, but rather a mixture of
small and large particles, the cluster can be made to
switch periodically from one compartment to the other.
This is called the granular clock. Finally, in Section 7 we
discuss the close analogy with a clustering problem of
great importance in modern society: the spontaneous
formation of traffic jams on a highway. The clustering of
cars bears a strong resemblance to granular clustering
and indeed some of the more promising models
proposed for its description are similar to the flux
model mentioned above.

2. The Maxwell demon experiment

2.1. A misbehaving gas

A striking illustration of cluster formation, known as
the Maxwell Demon experiment after the inspiring title
of [21], is shown in Figure 2. It consists of a cylindrical
container, mounted on a shaker, and divided into two

equal compartments by a wall. A handful of milli-
metre-sized beads are brought into a gaseous state by
shaking the system vertically (with amplitude a and
frequency f) and are thus able to jump from one
compartment to the other over the wall. If the shaking
is vigorous, the particles fly throughout the container,
distributing themselves equally over the two compart-
ments just as in any ordinary gas (Figure 2(a)). Indeed,
the beads even show a vertical density profile that
resembles the barometric height distribution, falling off
more or less exponentially with the height above the
vibrating bottom.

However, when the shaking strength is reduced
beneath a critical level, the particles are seen to
jump preferentially into one of the compartments
(Figures 2(b) and (c)).5 This goes on until a dynamic
equilibrium is reached between the two compartments.
In this situation, the average outflow of rapid particles
from the nearly empty compartment is balanced by
the outflow of slow particles from the well-filled
compartment.

This experiment was presented by Nordmeier and
Schlichting in 1995 [22]. Similar experiments had been
carried out before, by high school teachers wishing to
demonstrate the properties of a molecular gas, but they
had always discarded it as a failure: the setup did not
even fulfill the most basic property of all, namely that a
gas should spread uniformly over the available space.
Schlichting and Nordmeier were the first to recognise
the experiment for what it really was, namely an
excellent example of a granular gas showing sponta-
neous cluster formation.

The clustering is a consequence of the inelasticity of
the particle collisions (Figure 3) [8]. In every collision,
the particles lose some small part of their kinetic
energy, and this means that they make each other slow.
Stated more precisely, the collisions render their
relative velocity smaller, thereby simultaneously de-
creasing the velocity fluctuations. If one of the

Figure 3. The key to granular clustering: inelastic collision of
two identical particles. The sum of the velocities is constant
(v1þv2 ¼ v1

0þv20), expressing momentum conservation, whereas
their difference becomes smaller by a factor e ¼7(v2

07v1
0)/

(v27v1), called the coefficient of normal restitution. Here we
have taken e ¼ 0.9, the same value as for the beads in Figure 2.
The pair of particles loses a fraction e ¼ (17e2) of its initial
kinetic energy. For e ¼ 1 the collision would be fully elastic,
and the particles would not show any tendency to cluster
together.
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compartments contains considerably more particles
than the other (as will certainly be the case sooner or
later, due to statistical fluctuations) the particles in this
compartment will collide more often, become slower,
and hence jump less easily over the wall. Vice versa, the
particles in the other compartment will jump higher.
From this moment on the process becomes a snowball
effect: the particles from the underpopulated compart-
ment jump with increasing ease into the dense
compartment, and the growing density in the latter
makes the particles here slower and slower. So one
compartment is diluted while the other one develops a
cluster of slow particles, precisely as in Figure 2(c).

Only at sufficiently strong shaking the dissipation is
overpowered by the energy input, and the fluctuations
in the population are destroyed before the cluster has a
chance to develop. That is, the particles remain
distributed equally over the two compartments.

In terms of the granular temperature Tg, i.e. the
mean kinetic energy of the particles, the clustering can
be interpreted as a separation into a ‘cold’ compart-
ment (containing a lot of relatively slow particles)
and a ‘hot’ one (containing only a few rapid particles).
This is reminiscent of Maxwell’s Demon, but in a
completely new context, outside of thermodynamic
equilibrium [21].

2.2. Maxwell’s demon

The demon was introduced by James Clerk Maxwell in
1867 in a letter to his friend and colleague Peter
Guthrie Tait, and four years later he used it in his
Theory of Heat to illustrate the statistical nature of the
second law of thermodynamics [23,24]. Maxwell
envisioned two rooms with a small hole in the wall
between them. Initially, the air is in thermodynamic
equilibrium throughout the system, so the temperature
T in both rooms is equal. A little demon guards the
opening in the wall. Its task is simple: to let through
only slow molecules in one direction, and only fast
molecules in the opposite direction, and thus create
one cold and one hot room.

Maxwell’s point was that such a separation of slow
and fast molecules requires work. The probability that
it would ever happen spontaneously in an ordinary gas
consisting of any sizeable number of molecules is
vanishingly small, and would in fact be a violation of
the second law of thermodynamics – equally improb-
able as seeing one part of the water in a glass
spontaneously come to the boil while the other parts
turned into ice. However, the demon which is so
powerless in ordinary gases rears its head in the
granular experiment of Figures 2(b) and (c). Of course
it does so without violating any law of physics: the
granular gas is not in thermodynamic equilibrium (it

gets a continuous supply of energy from the vibrating
bottom, which is continuously dissipated via the
inelastic particle collisions) and the observed clustering
is in fact a bona fide example of pattern formation in a
non-equilibrium system.

A granular gas without external energy input is
destined to come to rest. Also in this case (a freely
cooling granular gas) one may witness cluster forma-
tion. This was demonstrated by Goldhirsch and
Zanetti, see Figure 4, who were the first to give a
general explanation for clustering in granular gases [8].
They considered a freely cooling granular gas in two
dimensions, consisting of a large number of discs (like
hockey pucks on a frictionless ice floor) colliding
inelastically. The discs were initially spread out
homogeneously, with a Maxwellian velocity distribu-
tion, and then left to evolve without any further energy
input. As a result of the collisions, the mean kinetic
energy of the discs (the granular temperature)
decreases steadily. Figure 4 shows the situation after
10 million collisions, clearly illustrating the sponta-
neous formation of dense and dilute regions. The
particles in the characteristic string-shaped clusters
have practically come to a standstill, whereas those in
the dilute regions are still moving about. On a more
detailed level, also other things happen (e.g. the

Figure 4. Cluster formation in a simulated freely cooling
granular gas, consisting of 40,000 discs colliding inelastically
(with restitution coefficient e ¼ 0.6) on a frictionless floor. The
fraction of the floor area covered by the discs is 0.05, and
periodic boundary conditions are used in both directions. The
snapshot is taken after 10 million collisions, i.e. on average 500
collisions per particle. From [8]. Reprinted figure with
permission from Goldhirsch and Zanetti, Phys. Rev. Lett., 70,
1619, 1993.Copyright (1993) by theAmericanPhysical Society.

160 K. van der Weele

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
H
E
A
L
-
L
i
n
k
 
C
o
n
s
o
r
t
i
u
m
]
 
A
t
:
 
1
5
:
0
5
 
2
0
 
O
c
t
o
b
e
r
 
2
0
0
8



velocity distribution develops a non-Maxwellian tail
[11,12], and certain strings of particles may experience
an inelastic collapse, i.e. an infinite number of
collisions in a finite time [25]) but here we will restrict
ourselves to the clustering effect.

Since it plays such a crucial role, let us look at the
mechanism of energy dissipation in some more detail.
Figure 3 depicts a head-on collision of two beads,
colliding with a coefficient of normal restitution e ¼ 0.9
(like the glass beads in Figure 2): the total momentum
of the two beads is conserved during the collision, but
their relative velocity is diminished by a factor 0.9. The
centre-of-mass kinetic energy after the collision is
therefore only 0.81 (¼ e2) of its value before the colli-
sion. Nineteen percent is transferred to the microscopic
energy scales in the form of deformations, heat, and
sound. But why does this mean that it is effectively lost?

Taking the situation of Figure 2(a), the typical
kinetic energy of a glass bead with radius 4 mm (i.e.
mass m � 1074 kg) and speed v � 1 ms71 is
1
2mv2 � 0:5� 10�4 J. This is to be compared with the
typical microscopic energy scale kB T � 0.4 6 10720 J
at room temperature T � 300 K, with kB ¼ 1.38 6
10723 J K71 the Boltzmann constant. The enormous
gap between these two energy scales – sixteen orders of
magnitude! – means that the energy transferred to the
microscopic levels will never be returned in any
coherent fashion so as to contribute to the bead’s
kinetic energy. This is the crucial difference with
ordinary molecular gases, where the kinetic, vibra-
tional, and rotational energy scales are all of the same
order (*kBT), enabling a continuous exchange be-
tween them. In a granular gas, room temperature is by
no means enough to stir the particles thermally and for
this reason the gas is sometimes called a-thermal: the
normal temperature T is negligible for all practical
purposes. That is why we work with the granular
temperature Tg instead.

The granular temperature is defined as [11,26–29]

Tgðr; tÞ ¼
1

2
mhv2 � hvi2i; ð1Þ

where the brackets h .. i denote an ensemble average (at
position r and time t) over many realisations of the
experiment under consideration. Just as in the kinetic
theory of ordinary gases, the temperature (1) is related
to the fluctuating energy due to the random motion
of the particles around the local mean velocity hvi. It
plays the same role – and has the same dimension of
energy – as the combination kBT in standard statistical
physics. Indeed, many of the well-known relations for
the thermodynamic temperature can be used (with
proper care6 [30–33]) also in granular dynamics,
provided that one takes kB ¼ 1. An example is the
ideal-gas law relating the pressure, density, and

temperature of a diluted gas, which we will encounter
in the next section (Equation (3)). In the Maxwell
Demon experiment, where the mean velocity hvi is
approximately zero, the temperature Tg(r, t) defined by
Equation (1) may simply be identified with the kinetic
energy of the particles at position r and time t.7

3. How to model the clustering

3.1. Granular hydrodynamics

Several theoretical models have been proposed to describe
the cluster formation in the Maxwell demon experiment.
The first one was given by Eggers, who treated the
granular gas as a hydrodynamic continuum and derived
an expression for the particle flux between the two
compartments [21]. Alternative descriptions were given by
Lipowski and co-workers [35,36] who pictured the
Maxwell demon experiment as a modified version of the
Ehrenfest urn model [37], and by Cecconi et al. [38] who
treated it as a two-well escape problem in the spirit of
Kramers’ model for chemical reactions [39,40]. A closely
related horizontal version of the Maxwell demon experi-
ment was treated in hydrodynamic terms by Brey et al.
[41]. Each of these models has its own merits (for an
overview see [42]) but here we choose to focus on Eggers’
model, which was historically the first one and stays most
closely to the actual experiment.

It also gives us the opportunity to touch upon one
of the central themes in the field of granular matter
today, namely, the question to what extent the rich
variety of phenomena observed in granular systems
can be captured by hydrodynamic continuum theory
[20,26,43–46]. Such a theory – in which the particles
are represented by continuum fields for the density,
velocity and temperature – can hardly be expected to
cover all phenomena, but only those which have a
typical length scale that is large compared to the size of
the mean free path of the particles. This is certainly not
always the case in granular systems, and it is this lack
of separation of scales (especially for the small-scale
phenomena) which forms the main obstacle for a
general continuum theory of granular matter. Never-
theless, for large-scale collective phenomena hydro-
dynamic modelling is a natural approach and has been
successfully applied to a large number of effects
ranging from the prominent anisotropy of the normal
stress in granular media [44] and the fluid-like impact
of a steel ball on sand [47] to the granular Leidenfrost
effect [48,49], the formation of longitudinal vortices in
granular chute flows [50,51] and convection rolls in a
vibrated granular bed [52,53]. In some of these cases
hydrodynamics even works beyond the nominal range
of its validity. As we will see, the clustering in
compartmentalised granular gases is well described
by hydrodynamic theory too.
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Figure 5. (a) TheMaxwell demon experiment as envisagedby
Eggers. The two compartments communicate through a small
opening in the wall, just as in Maxwell’s original thought
experiment, which is positioned at about 40 particle diameters
above the vibrating bottom. (b) Granular temperature Tg(z)
and particle density r(z) in a one-compartment system. The
solid lines come from MD simulations for 320 particles in a
compartment that is 160 particle diameters wide, colliding with
restitution coefficient e ¼ 0.95 (e ¼ 0.0975), the dotted lines
represent the hydrodynamic Equations (3)–(5), and the dashed
lines the constant-T approximation used in the fluxmodel. One
unit along the z-axis corresponds to50particlediameters.From
[21]. Reprinted figure with permission from J. Eggers, Phys.
Rev. Lett., 83, 5322, 1999. Copyright (1999) by the American
Physical Society.

As a starting point, Eggers took the condition for
dynamic equilibrium between the two compartments,
namely that the flux of particles from left to right must
equal that from right to left:

Fl!r ¼ Fr!l; ð2Þ

noting that an asymmetric equilibrium (as in
Figure 2(c)) can only be explained if the particle flux
from a compartment is not a monotonically increasing
function of the number of particles in the compart-
ment, as it would be for a gas of elastically colliding
particles. Instead, it must show a maximum.

Eggers considered a two-dimensional gas of collid-
ing discs, in a setup that really brings to life the
thought experiment of Maxwell (even more so than
the setup of Figure 2): the wall is taken to extend over
the whole height of the system, with only a small
opening of width S positioned at height h above the
bottom, see Figure 5(a). The bottom of the container is
taken to move in a sawtooth manner, with amplitude a
and frequency f, such that a colliding particle always
finds it to move upward with the same velocity vb ¼ af.
Moreover, the amplitude a is very small compared to
the mean free path of the particles, which means that
the bottom is effectively stationary.

Assuming the gas inside each compartment sepa-
rately to be in a steady state (the flux is assumed to be
sufficiently small to justify this), one can derive an
analytic expression for the particle outflow from each
compartment, based on three hydrodynamic equations.

(1) The equation of state relating the pressure p,
number density r, and granular temperature
Tg. Keeping things as simple as possible, Eggers
chose the well-known relation for an ideal gas
(with kB ¼ 1):

p ¼ rTg: ð3Þ

Of course, it would be possible to make a
more refined approximation by taking into
account the excluded volume taken up by the
particles (introducing van der Waals-like terms
in the equation of state [48,54–56]). However,
this is only important in the dense case, when
the volume fraction is high. It does not bring
any qualitative changes here and we therefore
stick to the minimal choice of the ideal gas
law (3).

(2) The momentum balance, which indicates how
fast the pressure drops with the height z above
the bottom:

dp

dz
¼ �mgr; ð4Þ

162 K. van der Weele
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where m is the mass of a particle and g ¼
9.81 ms72 is the gravitational acceleration.

(3) The balance between the energy flux through
the gas (emanating from the vibrating bottom)
and the dissipation due the inelastic particle
collisions:

d

dz
T1=2
g

dTg

dz

� �
¼ Cer2T3=2

g ; ð5Þ

where e ¼ (17e2) is the inelasticity parameter.
The left-hand side is modelled after the
standard heat conduction through a gas,
(d/dz) [k (r, T) dT/dz], with the heat conduc-
tivity kðr;TÞ / rT1=2‘ðrÞ being proportional to
the product of the density of the particles, their
velocity, and the mean free path length between
collisions. The right-hand side represents
the energy dissipation rate, which is equal
to the energy loss in one collision (/ eTg) times
the total number of collisions per unit time
(/ rT1=2

g =‘ðrÞ) [48,49]. Taking the mean free
path length to be reciprocal to the number
density as in an ideal gas [‘ðrÞ / 1=r], one
arrives at Equation (5). The coefficient C (¼ pd2

[21]) is constant in the present context.

Just like the equation of state, also the energy
balance (5) can be refined (e.g. by using a more
intricate formula for k (r, T) or adding an extra heat
conduction term proportional to eTg

3/2dr/dz [44]), but
again this does not alter the qualitative features of the
model. We further note that the energy balance of
Equation (5) presupposes that the density of particles
in each compartment is sufficiently large to make the
inter-particle collisions the dominant source of dis-
sipation. One might expect this to become a problem
for the compartment that is diluted, because here
the density will sooner or later become so small that
the particles hardly meet other particles anymore,
and the main source of dissipation will then be the
collisions with the walls.8 The system is then in the
Knudsen regime and no longer describable by hydro-
dynamics. In the corresponding Molecular Dynamics
(MD) simulations, Eggers simply took the collisions
with the walls to be elastic.

The granular temperature Tg(z) and density r(z)
that are found on the basis of the three hydrodynamic
Equations (3)–(5) are given by the dotted lines in
Figures 5(b) and (c). They agree well with the results of
the MD simulations (solid lines). The temperature
profile Tg(z) is seen to be close to constant, except for a
narrow region close to the bottom; this is the region
where the energy is injected into the system and the
particles have not yet had the chance to redistribute

this energy via collisions. Given that the height z ¼ h
at which the hole is positioned lies considerably above
this region, it is not unreasonable to approximate the
temperature profile with a simple constant: Tg(z) ¼ Tk,
with k ¼ 1, 2 labelling the compartments. This
approximation is represented by the dashed line in
Figures 5(b) and (c).

Now, substituting the ideal-gas lawEquation (3) into
Equation (4) one gets d(rTg)/dz ¼7mgr, and within
the constant-temperature approximation Tg(z) ¼ Tk

this becomes (for each compartment separately)
Tk drk/dz ¼7mgrk. This is easily solved to give a
density profile that decays exponentially with the height
above the floor: rk(z) ¼ rk(0) exp(7mgz/Tk). The
number density at the floor is determined by integrating
rk(z) from z ¼ 0 to ? and equalling this to Nk/L (i.e.
the number of particles in the compartment divided by
its width), which gives:

rkðzÞ ¼
mgNk

TkL
exp ð�mgz=TkÞ: ð6Þ

The value of Tk [ ¼ 1
2mhv

2
ki, from Equation (1) with

hvki =0] is obtained from the energy balance (5) [21]:

Tk ¼
m

p
afL

eNkd

� �2

; ð7Þ

with d the particle diameter and e ¼ (17e2) the
inelasticity parameter. As expected, Tk increases if we
increase the bottom velocity af, and decreases with
growing number of particles Nk in the compartment.

This is a good point to say a few words about
the dimensionless control parameters that govern the
system. The traditional shaking parameter is the
dimensionless shaking acceleration � ¼ a(2pf )2/g.
However, in the present system the relevant combina-
tion of a and f must be af (i.e. the velocity of the
vibrating bottom) rather than af2. This is suggested by
the expression for the temperature Equation (7), and
can be understood from the non-dimensional form of
the hydrodynamic equations. In particular, consider
the combination of the equation of state (3) and the
force balance (4):

dðrTgÞ
dz

¼ �mgr: ð8Þ

This equation can be de-dimensionalised by replacing
the height z by the non-dimensional height ~z ¼ z=h,
the number density r by the non-dimensional den-
sity ~r ¼ r=rcp (with rcp the close-packed density,
which in the 2D model corresponds to a hexagonal
arrangement of the discs), and the temperature Tg by
the non-dimensional temperature ~Tg ¼ Tg=½mðafÞ2�
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Figure 6. The flux function F(nk), i.e. the particle flux from
compartment k as a function of the fraction nk within that
compartment. As a result of the inelasticity of the particle
collisions, F(nk) only grows up to a certain value of nk and
decreases if the fraction is further increased. The horizontal
dashed line shows that the flux from a relatively empty
compartment (n7) can be equal to the flux from a well-filled
compartment (nþ), and this is exactly what happens in the
clustered state. Note that the two fractions add up to one:
n7 þ nþ ¼ 1.

(with m(af )2 being proportional to the energy imparted
to the particles by the vibrating bottom). Equation (8)
then takes the form

dð~r ~TgÞ
d~z

¼ � gh

ðafÞ2
~r; ð9Þ

from which we see that the dimensionless parameter
gh/(af)2 must play a key role in the present model.
Other important dimensionless control parameters are
the inelasticity e and the filling factor Ntotd/KL (with
Ntot the total number of particles in the system and K
the number of compartments), which represents the
overall particle content of the system. All these
parameters can be recognised in the expression for
the temperature Equation (7) and we will encounter
them again in the next subsection.

3.2. Flux model

The particle flux from compartment k through the hole
is proportional to rk(h)S(Tk/2p)

1/2, i.e. the product of
the number density at the height of the hole, the size of
the hole S, and the velocity of the particles in the
horizontal direction. This can be worked out to yield
Fð �NkÞ ¼ F0

�N2
kexp f�b �N2

kg, where �Nk denotes Nk/L
(the number of particles in compartment k per unit
width) and the factors F0 and b are given by
F0 ¼ (2p)1/2egSd/(af) and b ¼ pe2ghd2/(af)2 [21]. As
anticipated, the particle flux is indeed a non-
monotonic function of the number of particles in
compartment k.

The flux function has also been measured directly
in experiment and MD simulations, see e.g. [57,58].
The result is always a one-humped function, but where
the theoretical Eggers function grows as �N2

k for small
�Nk, the measured flux functions usually start out from
�Nk ¼ 0 with a power smaller than quadratic. This can
be traced back to the fact that in Eggers’ model the
dissipation is taken to result from the binary collisions
between the particles only (the frequency of which
grows as �N2

k), whereas in reality also the collisions of
the particles with the walls (linear in �Nk) contribute. In
the Knudsen limit �Nk ! 0 the particle–wall collisions
even become the dominant source of dissipation.
However, the most important feature of the flux
function (its one-humped shape) is admirably captured
by Eggers’ model.

For our purposes, it will be convenient to write the
flux as a function of the fraction nk ¼ Nk/Ntot

contained in the kth compartment rather than as a
function of Nk/L. The flux then takes the equivalent
form [59]:

FðnkÞ ¼ An2kexp ð� ~Bn2kÞ; ð10Þ

where the fraction nk is subject to the conservation
condition

P2
k¼1 nk ¼ 1, and the factors A and ~B

take the form A ¼ (2p)1/2egNtot
2 Sd/(afL2) and

~B ¼ 4pe2½gh=ðafÞ2�½Ntotd=2L�2. This flux function
F(nk) is depicted in Figure 6 for A ¼ 1 s71 and ~B ¼ 6.

The factor A determines the absolute rate of the
flux. It must not be too large, in order to justify the
assumption that the granular gas in each compartment
separately is in a steady state, but its precise value is
not important and may be incorporated in the time
scale. The dimensionless parameter ~B is of greater
importance: its value determines whether the system
will end up in the uniform state (for small ~B) or in the
clustered state (for large ~B). Note that it combines the
three dimensionless control parameters mentioned in
the previous subsection all in one, namely the
inelasticity e, the shaking parameter gh/(af)2, and the
filling factor Ntotd/KL. For a given setup and choice of
beads (i.e. h, L, K, d and e fixed) the value of ~B can be
raised either by increasing the total number of particles
Ntot, or by decreasing the driving velocity af. In our
experiments we usually use the latter option.

In order to make direct contact with our experi-
ments we now replace the two-dimensional discs with
the actual three-dimensional beads of Figure 2. The
compartment width L is replaced by a compartment
ground area O, and the aperture S between the
compartments is no longer a 1D length but a 2D
surface. This has no consequences for the general form
of the flux function, which is still given by Equation
(10), but the two factors A and ~B now read:

A ¼ c1
egN2

totSd
2

afO2
; and ~B ¼ c2e2

gh

ðafÞ2
Ntotd

2

O

� �2

� K2B:

ð11Þ
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Here c1 and c2 are constants that we will use as free
parameters to fix the timescale and the shaking
parameter, respectively. Note that Equation (11) also
introduces the alternative shaking parameter B
(¼ ~B=K2). This choice is sometimes preferable because
the transition from the homogeneous configuration to
the clustered state, which occurs at ~B ¼ K2, in terms of
B always takes place at the same value B ¼ 1,
irrespective of the number of compartments K in the
system. For the moment we proceed with the case of
K ¼ 2 compartments.

In the vigorous-shaking limit ~B! 0 the exponen-
tial term in Equation (10) approaches unity, and in
that case F(nk) grows monotonically with nk, just as for
an elastic gas with e ¼ 0. No balance between
unequally filled compartments is possible in this case,
and the system simply settles into the homogeneous
state.

However, as ~B is raised (by lowering the shaking
strength) the exponential term comes into play, see
Figure 6. The function F(nk) still starts out from zero
at nk ¼ 0 and initially increases with nk, but beyond
nk ¼ ~B�1=2 the function decreases, as a result of the
dissipative effect of the increasingly frequent particle
collisions. This enables a flux balance between a well-
filled and a dilute compartment, provided the max-
imum of F(nk) lies at a value nk <

1
2 (i.e. ~B > 4). The

condition
P

nk ¼ 1 can then be satisfied not only for
an equal pair n1 ¼ n2 ¼ 1

2 (corresponding to a flux
level just beneath the maximum in Figure 6) but also
for an unequal pair n1 6¼ n2, corresponding to a
smaller flux level indicated by the horizontal
dashed line.

The dynamics of the system is governed by the
following balance equation,

dn1
dt
¼ �Fðn1Þ þ Fðn2Þ þ x1

¼ �Fðn1Þ þ Fð1� n1Þ þ x1; ð12Þ

and analogously for dn2/dt, which simply states that the
time rate of change of the particle fraction in the kth
compartment (dnk/dt) is equal to the inflow from its
neighbour minus the outflow from the compartment
itself. The term x1 is a Gaussian white noise term
representing the fluctuations in the particle flux. As
stated already in Section 1, granular gases are very
suitable to study small-number statistical fluctuations,
since they contain much less than the standard 1023

particles of textbook statistical systems. The influence of
these fluctuations on the clustering transition was
discussed by Eggers [21] and Lipowski and Droz [35],
and worked out in detail by Mikkelsen et al. [58].
Corroborated byMD simulations, it was found that the
system of Figure 2 is well described by the mean-field
description of Equation (12), i.e. without the noise term,

already for Ntot ¼ 300 particles. Only for smaller Ntot

the statistical noise starts to dominate and themean-field
description breaks down [58]. In the present review, we
will just assume that Ntot is sufficiently large to neglect
the noise term, sowe focus on themean-fieldmodel only.

In equilibrium the time derivatives are zero, dnk/
dt ¼ 0, and the two fluxes in Equation (12) must cancel
each other [as foreseen in Equation (2)]: F(n1) ¼
F(17n1). For ~B < 4 (or B 5 1) this equality has
only one solution: the symmetric state n1 ¼ 0.5. For
~B � 4 (or B 4 1) this solution becomes unstable, but
simultaneously two asymmetric stable solutions come
into existence; one representing a state with a cluster in
the left compartment, and the second one its (equiva-
lent) mirror image with a cluster in the right compart-
ment. The transition is depicted in Figure 7(a). The
solid dots are experimental measurements at various
values of B (each measurement consists of two points,
n1 and n2, which together add up to 1) and the lines
represent the equilibrium solutions of the flux model.
Solid lines denote stable states and dashed lines
unstable ones.

The clustering transition for K ¼ 2 compartments
is seen to be a pitchfork bifurcation, i.e. a second-order
continuous phase transition. In accordance with this,
the solid lines just beyond the critical point B ¼ 1 are
accurately described by nk ¼ 1

2� aðB� 1Þb, with cri-
tical exponent b ¼ 1/2, which is the common (mean-
field) power-law behaviour near a second-order phase
transition [21,42,60].

4. Extension to more than two compartments

4.1. Hysteretic clustering

The Maxwell demon experiment is easily extended
to more than two compartments. For a system consist-
ing of K compartments in a row, or better still, in a ring
such that the Kth and first compartment are neigh-
bours,9 the balance equation (12) takes the form:

dnk
dt
¼ Fðnk�1Þ � 2FðnkÞ þ Fðnkþ1Þ; ð13Þ

with k ¼ 1,2, . . . ,K and
PK

k¼1 nk ¼ 1. We have dis-
regarded the noise term xk.

In contrast to the case for K ¼ 2, the clustering
transition for K � 3 is found to be abrupt and hystere-
tic, i.e. a first-order phase transition. Figure 7(b) shows
the experimental results together with the flux model
predictions for a cyclic three-compartment system [59].
The dots represent experimental runs that were started
from the uniform distribution f13 ;

1
3 ;

1
3g, and the crosses

represent experiments that were started from a single-
peaked distribution ({1, 0, 0} or one of its cyclic
equivalents): we observe that there is an interval of B-
values for which both the uniform and the clustered
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state are stable. This is the region of hysteresis of the
transition. If we start with a uniform distribution at
strong shaking (B	 1) and slowly increase the value
of B, the uniform state becomes unstable at B ¼ 1. It is
at this point that we get a clustered state. When B is
then slowly turned down again, the clustered state
remains stable until B ¼ 0.73 and it is not before we
reach this B-value that we witness the reverse transi-
tion to the uniform state.

The dashed curves for B 4 1 that run above and
below the horizontal line of the uniform distribution
are associated with a transient state in which two of the
compartments are competing for dominance, while the
third compartment is already much more dilute.
Starting out from the (unstable) uniform distribution,

the system generally first goes through this transient
state before it settles in the clustered equilibrium. No
such transient states are encountered in the opposite
transition for B 5 0.73.

This hysteretic bifurcation diagram can be ex-
plained entirely by the flux model, which for three
compartments takes the form:

dn1
dt
¼ �2Fðn1Þ þ Fðn2Þ þ Fðn3Þ

¼ �2Fð1� n2 � n3Þ þ Fðn2Þ þ Fðn3Þ; ð14Þ

and cyclic permutations for dn2/dt and dn3/dt. All
admissible distributions {n1(t), n2(t), n3(t)} (subject to
the conservation condition

P3
k¼1 nkðtÞ ¼ 1) can be

accommodated in a planar triangle, see Figure 8. The
centre of this triangle represents the equal dis-
tributionf13 ;

1
3 ;

1
3g, while the corners correspond to

{1, 0, 0}, {0, 1, 0}, and {0, 0, 1}, respectively.
The equilibrium solutions that are depicted in the

bifurcation diagram Figure 7(b) are given by dnk/
dt ¼ 0, k ¼ 1, 2, 3. The uniform distributionf13 ;

1
3 ;

1
3g,

which is an equilibrium for all B-values, is the most
symmetric solution the system admits and when it
becomes unstable (at B ¼ 1) it gives way to solutions
that necessarily have a lesser degree of symmetry. In
the triangular plane these new solutions lie on the three
lines of reduced symmetry n1 ¼ n2, n1 ¼ n3, or n2 ¼ n3,
see Figure 8. For example, the line n2 ¼ n3 goes from
the lower left corner {1, 0, 0} to the middle of the right-
hand side of the triangle, f0; 12 ;

1
2g. With n2 ¼ n3 : n,

n1 ¼ 1 – 2n, and dn2=dt ¼ dn3=dt ¼ � 1
2 dn1=dt, Equa-

tion (14) along this line takes the form:

dn

dt
¼ Fð1� 2nÞ � FðnÞ

¼ Afð1� 2nÞ2exp ½�9Bð1� 2nÞ2� � n2exp ð�9Bn2Þg;
ð15Þ

and cyclic permutations along the other two (com-
pletely equivalent) symmetry lines. The situation is
depicted in Figure 8 at four successive values of B.

At B ¼ 0.72 (curve a) we see that dn/dt has only
one zero (steady state) on the relevant interval 0 
 n

 1/2, namely, at n ¼ 1/3. This solution is stable, as
one can easily check from the sign of dn/dt. So
regardless of the initial condition the system always
ends up in f13 ;

1
3 ;

1
3g: its basin of attraction (the shaded

area in Figure 8) is the whole triangular plane. Next,
for B ¼ Bsn,3 ¼ 0.73 (not shown), the function dn/dt
touches zero at n ¼ 0.1255, corresponding to a
distribution {0.7490, 0.1255, 0.1255} and its cyclic
permutations. The index sn denotes that this involves a
saddle-node bifurcation, while the index 3 stands for
the number of compartments.

Figure 7. (a) Bifurcation diagram for the Maxwell demon
experiment with K ¼ 2 compartments (k ¼ 1, 2). The dots
are experimental data and the lines are the stable (solid) and
unstable (dashed) equilibria predicted by the flux model of
Equations (10) and (11). The transition to the clustered state
is a continuous one, i.e. a second-order phase transition. (b)
The same for K ¼ 3 compartments (k ¼ 1, 2, 3). The dots
and crosses are experimental data: dots denote experimental
runs that were started from the uniform distribution f13 ;

1
3 ;

1
3g

and crosses denote those that were started from a single
peaked distribution. The transitions to and from the
clustered state – indicated by the arrows – are abrupt and
hysteretic, typical of a first-order phase transition (from [59]).
Reprinted from Europhys Lett., 53, 328 (2001). Copyright
2001 by EDP Sciences.
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In curve b, at B ¼ 0.78, we see that dn/dt has
meanwhile gone through zero, creating one stable and
one unstable equilibrium along the line n2 ¼ n3 (and,
because of the threefold symmetry of the system, also
along the lines n1 ¼ n2 and n2 ¼ n3). The three newly
created stable equilibria are clustered distributions.
Also the uniform distribution is still stable, so now
there are four co-existing stable states, each one
surrounded by its own basin of attraction. The three
newly created unstable equilibria move towards the
centre of the triangle, closing in upon f13 ;

1
3 ;

1
3g and

making its basin of attraction (the shaded area) smaller
and smaller for increasing B.

Curve c depicts the situation for the critical value
B ¼ 1.00. The three unstable states have just reached
the point f13 ;

1
3 ;

1
3g, reducing its basin of attraction to

zero. At this instant the uniform distribution turns
unstable. So from now on all initial configurations end
up in one of the three clustered distributions.

Curve d, at B ¼ 1.56, gives an impression of the
final situation. The basins of attraction of the stable

clustered states divide the triangle into three equal,
kite-shaped parts. All the other equilibrium solutions
(the three states that have gone through the point
f13 ;

1
3 ;

1
3g, and the point f13 ;

1
3 ;

1
3g itself) are unstable. The

former are the transient states mentioned above, in
which two of the compartments compete for dom-
inance; they are saddle points, with stable branches
along the symmetry lines (hence the negative slope of
dn/dt in Figure 8) and unstable branches in the
perpendicular directions, as indicated in the triangular
plot. The symmetric solution f13 ;

1
3 ;

1
3g is fully unstable.

The above sequence of events can be translated
immediately into the bifurcation diagram of
Figure 7(b). Moreover, it provides a physical reason
for the hysteresis [59]: the forward transition at B ¼ 1
has more degrees of freedom at its disposal than the
reverse one at B ¼ Bsn,3 ¼ 0.73. The former can take
place via a variety of paths through any of the 2D kite-
shaped sections of the flow diagram (see Figure 8(d))
whereas the latter is confined to take place along one
of the 1D symmetry lines (see Figures 8(a) and (b)).

Figure 8. The rate of change dn/dt as function of n along the three symmetry axes of the three-compartment system (see
Equation (15)), for four successive values of B: (a) B ¼ 0.72, (b) B ¼ 0.78, (c) B ¼ 1.0, and (d) B ¼ 1.56. For each of these values
a triangular flow diagram is given, which shows the dynamics of the full system. The shaded area is the (diminishing) basin of
attraction of the uniform equilibrium f13 ;

1
3 ;

1
3g in the centre of the triangle; the white regions are the basins of attraction of the

clustered solutions. Closed circles represent stable equilibria, open circles unstable ones. From [59]. Reprinted from Europhys
Lett., 53, 328 (2001). Copyright 2001 by EDP Sciences.
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For the two-compartment system (where the analo-
gous flow diagram reduces to a line) there is no room
for any difference of freedom between the forward and
backward transition, and hence there is no hysteresis.

As for the quantitative agreement between theory
and experiment, we note that the experimentally
measured ratio Breverse/Bforward � 0.88 in Figure 7(b) is
larger than the theoretical ratio 0.73. This can be
attributed to statistical fluctuations in the particle
fractions (which are typically of order Nk

71/2, and
larger near a bifurcation): close to B ¼ 1 these
fluctuations extend beyond the rapidly diminishing
basin of attraction of f13 ;

1
3 ;

1
3g and cause the system to

switch prematurely to a clustered state, i.e. the forward
transition for increasing B (see the dots in Figure 7(b))
occurs at a B-value that is smaller than Bcrit ¼ 1.
Analogously, the reverse transition for decreasing B (see
the crosses in Figure 7(b)) takes place at a value Breverse

that is somewhat larger than Bsn,3 ¼ 0.73. Both effects
conspire to make the experimentally measured ratio

Breverse/Bforward larger than the theoretical prediction
Bsn,3/Bcrit ¼ 0.73. In addition, of course, one should
recall that the Eggers flux function of Equation (10) is
approximate, and that the theoretical prediction 0.73 is
therefore an approximation, too. Any small changes in
the function F(nk) will affect the ratio Bsn,3/Bcrit,
however, not the qualitative properties of the model.

4.2. Coarsening

A first-order transition is found for all K � 3. The
hysteretic behaviour becomes more pronounced when
the number of compartments is increased, and the
transient states become more numerous and also more
important [61]. Figure 9(a) illustrates this for the case
of K ¼ 5 non-cyclic compartments. The region of
hysteresis (where the uniform and the clustered state
are both stable) now extends from B ¼ Bsn,5 ¼ 0.34 to
B ¼ 1 and the dashed lines of the transient states form
a whole web, reaching even to the left of B ¼ 1. They

Figure 9. Maxwell demon experiment for K ¼ 5 compartments. (a) Bifurcation diagram showing the stable (solid) and unstable
(dashed) equilibria of the flux model. The sketches on the right depict the corresponding configurations. (b) Four stages in the
clustering experiment at B slightly above 1, starting out from the (unstable) uniform state nk ¼ 0.2, k ¼ 1,...,5. The particles do
not cluster directly into one compartment but first go through a transient two-cluster state, which can be seen in the snapshots at
t ¼ 10 s and t ¼ 25 s. (c) Breakdown of a cluster at stronger shaking (B ¼ 0.33). The cluster is seen to survive up to t ¼ 42 s, and
then suddenly collapses: within one second the distribution becomes uniform (from [42]). K. van der Weele et al.: The Physics of
Granular Media, H. Hinrichsen and D.E. Wolf, Editors. 2004. Copyright Wiley–VCH Verlag GmbH & Co. KGaA. Reproduced
with permission.
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correspond to states with m ¼ 2, 3, 4 clusters,
respectively, of which one representative configuration
is depicted.

In Figure 9(b) four stages in the clustering process
are shown for a B-value slightly above 1, starting out
from the nearly uniform distribution. A two-cluster
transient state is clearly visible at t ¼ 10s and t ¼ 25s,
and it takes about a minute (i.e. 1260 vibration cycles)
before the system gets past this state and reaches the
one-cluster state. For larger values of K the experiment
can easily get stuck in such a transient state (especially
for low driving frequencies, i.e. B� 1) and it may take
a very long time before the one-cluster state is reached,
even though mathematically speaking this is the only
truly stable equilibrium [61,62]. The clusters of the
transient states collapse one by one, and the surviving
clusters get larger, in an exceptionally slow coarsening
process: whereas the characteristic sizes in most
coarsening processes in nature grow as t1/2 (or some
similar algebraic rate), the size of the surviving
granular clusters is found to increase only at the
snail’s pace of [log(t)]1/2 [63–65].

The opposite process of declustering, depicted in
Figure 9(c) for a B-value just below Bsn,5, is also of
interest. Not only because declustering is more desirable
in practical applications (e.g. in sorting machines and
conveyor belts, where clustering is definitely an un-
wanted phenomenon) but also because the breakdown
of a cluster turns out to be by no means the same as
clustering in reverse time order. This in itself is not
surprising, since a certain lack of time-reversal symmetry
is to be expected in any dissipative system, but it is the
degree to which the symmetry is broken which makes it
spectacular here. Van derMeer et al. [66] discovered that
the breakdown takes place via a ‘sudden collapse’:
starting out with all particles in one compartment, the
cluster seems stable for a considerable time, spilling only
a small number of particles to its neighbours. However,
at a certain moment (between t ¼ 42 and 43 s in the
experiment of Figure 9(c)) the cluster suddenly collapses
and the particles spread out over all compartments. This
collapse, which can be delayed for extremely long times
if B approaches the critical value Bsn,K (with the cluster
lifetime diverging as [Bsn,K 7 B]71/2) has been studied
in detail in [66] and [67].

5. How the demon can be put to work

5.1. Granular fountain

In this section we will see how the demon can be turned
into a helpful creature and be made to extract useful
work from the stochastically moving particles. To this
end we add a new element to the two-compartment
system: a small hole in the wall, located at the bottom
(see Figure 10), thereby allowing also the less energetic

particles to switch compartment. This seemingly small
modification turns out to have a major influence on the
behaviour of the system.

The density difference between the dense and dilute
compartment induces a flow through the hole towards
the latter. When a particle enters the diluted compart-
ment, it soon picks up sufficient kinetic energy from the
vibrating bottom to jump over the wall again, leading
to a stable convection roll as shown in Figure 10(a).
The collective motion of the particles is upwards in the
hot (dilute) compartment and downwards in the cold
(dense) one. This is called the granular fountain [68].

In terms of the flux model, the hole introduces an
extra term in the flux function:

FfountðnkÞ ¼ FðnkÞ þ lF0ðnkÞ ¼ An2kexp ð� ~Bn2kÞ þ lAn2k:

ð16Þ

Figure 10. The granular fountain: (a) the experiment, with
arrows indicating the direction of the particle flux through
the two openings. The flux through the opening at height h is
directed towards the dense compartment, whereas the flux
through the small hole is directed towards the dilute
compartment. (b) The corresponding bifurcation diagram,
showing the flux model predictions (solid curves for stable
states, dashed for unstable ones) together with the
experimental measurements. The shaking parameter along
the horizontal axis is ~B ¼ K2B ¼ 4B: The blue asterisks
represent experiments that were started from the symmetric
initial conditionf12 ;

1
2g; the red stars those that were started

from an initial state with all particles in one compartment,
i.e. either {1, 0} or {0, 1}.
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The flux-through-the-hole lF0(nk) is in principle of the
same form as the flux over the wall, but since the hole
is located at zero height (hence the subscript 0) the
corresponding value of ~B is zero and the exponential
part is suppressed. The prefactor l is determined by
the size of the hole. Evidently, this size must be at least
as large as a particle diameter to have any effect. On
the other hand it should not be made too large,
otherwise the flux through the hole will be too
abundant and always establish a uniform equilibrium
between the compartments.

In Figure 10(b) we show the bifurcation diagram
determined by the flux model (solid and dashed lines)
and experimental measurements (indicated by the
asterisks and stars). We see that the transition from
the uniform distribution to the fountain state (upon
increasing B) occurs through a pitchfork bifurcation
just as for the original two-compartment system. The
fountain state is stable in the interval 1 
 B 
 8.2, or
equivalently 4 
 ~B 
 32:8 (with ~B ¼ K2B ¼ 4B, cf.
Equation (11)). When B is increased further, it breaks
down and gives way to the uniform state again, this time
via a discontinuous, first-order phase transition [68,69].
In this high-B regime, the shaking is so weak that the
particles do not get sufficient kinetic energy anymore to
jump to height h (not even in a diluted compartment)
and the only active opening is the hole at the bottom, via
which a uniform equilibrium is established.

Just like the original Maxwell demon system, the
two-compartment fountain can be extended to K � 3
compartments [65,69]. In that case, for increasing B
(decreasing shaking strength) one finds a stepwise
transition from the uniform state with K hot compart-
ments, first to a one-cluster state (1 cold compartment
and K71 hot ones), then to a two-cluster state (2 cold
compartments and K72 hot ones), and so on, until at
some low shaking strength one arrives at the situation
with K cold compartments (and zero hot ones), which
is simply a uniform state again. For K � 3 all the
successive steps in this cascade, including the first one
at B ¼ 1, are hysteretic first-order transitions.

5.2. A granular Brownian motor

We now go one step further: we take a cyclic K-
compartment system (with K even) and alternatingly
close the lower and the upper passage in the walls. As
is seen in Figure 11(a), the separate convection rolls
now join together into one continuous collective
motion that meanders sideways through the entire
system. That is, the convective motion between
adjacent compartments has been translated into a
directed motion along the whole length of the system.
This is a Brownian motor, i.e. a system in which
isotropic noise (from the stochastically colliding

particles) is converted into a directed motion [68,70–
72]. It is in fact a very special type of Brownian motor,
since the directed motion does not arise from any
geometric asymmetry in the setup but from the
spontaneous symmetry breaking induced by the
clustering effect. This means that, starting from a
uniform particle distribution, the meandering motion
may be excited equally well in the opposite direction.

In the flux model, we now alternatingly have only
the first term F(nk) or the second term lF0(nk) of the
fountain flux function (cf. Equation (16)):

dnk
dt
¼ lF0ðnk�1Þ � lF0ðnkÞ � FðnkÞ þ Fðnkþ1Þ; ð17Þ

dnkþ1
dt
¼ FðnkÞ � Fðnkþ1Þ � lF0ðnkþ1Þ þ lF0ðnkþ2Þ;

ð18Þ

where the first equation represents the compartments
with a lower passage at their left-hand side, and the
second equation the adjacent ones, which have an
upper passage at the left-hand side. Figure 11(b) shows
the bifurcation diagram for the smallest conceivable
motor, namely for K ¼ 4.10 It features co-existing non-
symmetric states of two different types:

(1) Ratchet states with alternating dense and dilute
compartments and a net particle flux through
the system (black solid curves in Figure 11(b)).
The non-zero value of this flux is the hallmark of
a spontaneous ratchet effect, i.e. the Brownian
motor. Obviously the magnitude of the net flux
will be exactly the same as that of the convective
flow in the corresponding granular fountain.

(2) Fluxless clustered states consisting of K dense
and K dilute compartments, but not in the
order dense–dilute–dense–dilute needed for
the directed motion (red solid curves in
Figure 11(b)), which means that there is no
net particle flux, but simply a local dynamical
balance between adjacent compartments. The
clustering is somewhat more pronounced than
in the ratchet state. The reason for this is that in
the ratchet state (due to the positive net flux)
there are always a few extra particles in the
dilute compartments, just passing by on their
way to the next dense compartment.

Starting from the uniform distribution at vigorous
driving (i.e. low B), at B ¼ 1 or ~B ¼ 16, with
~B ¼ K2B ¼ 16B, a fluxless clustered state comes into
existence through a pitchfork bifurcation, rendering
the uniform state unstable with respect to perturba-
tions in the directions {þ77þ} and (equivalently)
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{7þþ7}. Soon afterwards, at B � 1.2, the uniform
state becomes unstable also to perturbations in the
directions {þ7þ7} and {7þ7þ}, through a second
pitchfork bifurcation, and the ratchet state comes into
existence. At birth, this ratchet state is still unstable,
but it is soon stabilised by the generation of an
unstable asymmetric state in which all four compart-
ments have a different fraction nk. Now follows an
interval in which the ratchet state and the fluxless
clustered state are both stable, until at B � 3.8 the
ratchet state and the completely asymmetric state
recombine into an unstable ratchet state, which
eventually disappears through a saddle-node

bifurcation at B � 4.1. From B � 3.8 on, the fluxless
clustered state is the only stable state in the system.

The ratchet effect is possible for all even-numbered
K � 4, but the chances that the required strict alter-
nation of dense and dilute compartments {..þ7þ7..}
arises spontaneously from a uniform state swiftly
decrease for growing K. Any deviation from this
pattern will block the net flux. Of course, it always
remains possible to induce the ratchet effect by means
of a properly chosen initial particle distribution, or by
applying a small external force (during a certain
preparatory time span) in the horizontal direction in
Figure 11(a). This is comparable to other systems with

Figure 11. A granular Brownian motor: (a) sketch of the setup, where the boundary conditions are understood to be cyclic. Just
as in the fountain (Figure 10) the net flux through the slits at height h is directed towards the dense compartments, and the flux
through the holes at the bottom is directed towards the dilute compartments. This sustains a directed motion throughout the
system, called the ratchet effect. (b) The corresponding bifurcation diagram for K ¼ 4 compartments and l ¼ 0.05 (cf. Equation
(16)). The shaking parameter along the horizontal axis is ~B ¼ K2B ¼ 16B. At B ¼ 1 the uniform distribution nk ¼ 0.25
(k ¼ 1, . . . ,4) becomes unstable, giving way to a stable fluxless clustered state through a pitchfork bifurcation (red curves). A
second pitchfork bifurcation (at B � 1.2) generates the ratchet state, with a non-zero net flux (blue curves). The ratchet state is
stabilised through a third pitchfork bifurcation at B � 1.25 (in which a completely asymmetric, unstable state is created,
indicated by the yellow curves) and destabilises again at B � 3.8 when it recombines with this same asymmetric state. Solid lines
correspond to stable solutions, dashed and dotted lines to unstable ones.
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spontaneous symmetry breaking, e.g. a ferromagnet:11

just like a piece of iron picked from the shelf normally
appears to be unmagnetised and an external magnetic
field is needed to produce a magnetisation on a global
scale, a ratchet state for large K needs some initial bias.

6. Particles of different size

6.1. Granular clock

Up to now we have been considering granular gases
that consisted of identical spherical particles, but in
practice most granular systems are not quite like that.
Usually there is some spread in the size, form, and
density of the particles. In that case the clustering can
take even more interesting forms than before [73,74].
Here we consider a mixture of large and small beads
(i.e. spherical particles of two sizes, which in every
other respect are equal): this is the setting for a
remarkable effect called the granular clock, in which
the cluster switches periodically from one compart-
ment to the other [75–78]. The same phenomenon also
occurs in mixtures of beads that have the same size but
different density [33,79].

The granular clock effect, first predicted on the basis
of numerical simulations [75] and theory [76], was
demonstrated experimentally by Viridi et al. [77,78] (see
Figure 12). The setup consists of two compartments, just
as in the original Maxwell demon experiment, but now
with 27 large glass beads (diameter dL ¼ 4 mm) and 138
smaller ones (dS ¼ 2 mm). Initially all the beads are
positioned in the right compartment. At vigorous
shaking (af 4 0.17 ms71), the beads – large and small

– spread out evenly over the two compartments. And if
the shaking is too weak (af 5 0.08 m s71), the particles
are unable to jump over the wall and remain in the right
compartment forever. This is all just as in the mono-
disperse case.

It is for intermediate shaking strengths that the
interesting new effects come into play. The large particles
stay close to the bottom, forming a kind of mattress for
the smaller ones. Thanks to this mattress, the small
beads jump higher than they would on the plain floor,
not just because the large ones occupy the layer close to
the floor and thereby drive the smaller ones to the higher
regions but mainly because of the favourable momen-
tum transfer from the large to the small beads, by which
the latter (due to their small mass) gain high velocities.
The situation is reminiscent of the demonstration
experiment in which one puts a tennis ball on top of a
basketball and let them drop together: upon hitting the
ground, the tennis ball is literally launched into the air,
flying much higher than its release height [80].

First, if the shaking is made strong enough to let
one small bead jump over the wall (af 4 0.08 ms71),
all the small ones will follow, since with every bead that
leaves the compartment the remaining ones lose less
energy in collisions and thus become more energetic.
For 0.08 5 af 5 0.11 ms71 the large particles are not
mobile enough to follow suit and thus we get a perfect
separation of small and large beads: the large ones are
still in the right compartment and all the small ones
now reside in the left compartment. Without a mattress
they are unable to jump back into the right compart-
ment, so the separated state is stable. In fact, for the

Figure 12. Granular clock: (a)–(e) a mixture of 27 large glass beads (diameter 4 mm) and 138 small ones (diameter 2 mm)
shaken at f ¼ 20 Hz and a ¼ 6 mm; shaking parameter af ¼ 0.12 ms71. The five snapshots, taken at t ¼ 237, 240, 295, 303 and
340 s, cover one-half of the clock’s period. (f) The experimentally measured particle fractions in the left compartment as a
function of time. The cluster oscillates back and forth between the left and right compartment with period 206 s. From [77].
Reprinted figure with permission from S. Viridi, M. Schmick, and M. Markus, Phys. Rev. E., 74, 041301, 2006. Copyright (2006)
by the American Physical Society.
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particle numbers chosen in this experiment (only 27
large ones against 138 small ones) the large ones now
actually jump slightly higher than the small ones.

When af is increased beyond 0.11 m s71, we get the
situation of Figure 12(a)–(e). Now the large particles are
able to follow the smaller ones over the wall. This
exodus speeds up with every bead that leaves the
compartment, and before long all – or practically all –
particles are in the left compartment (Figure 12(e)). But
this is just the initial state in mirror image! So the whole
process will start all over again in the opposite direction,
and will in fact repeat itself indefinitely, with the cluster
going back and forth periodically between the two
compartments. This is the granular clock effect.

Figure 12(f) shows the experimentally measured
fractions in the left compartment for a ¼ 6 mm and
f ¼ 20 Hz (i.e. af ¼ 0.12 ms71). One sees clearly how
the small beads (solid curve) precede the large ones
(dashed curve) and that, as soon as the switch from
right to left compartment is complete, the reverse
process towards the right compartment sets in without
delay. The period of oscillation in this case is 206 s.

The clock effect in this experiment was found to
be stable for 0.11 
 af 
 0.17 ms71, and its period in
this interval was observed to decrease steadily from
10 min at af ¼ 0.11 ms71 to roughly 1 min at af ¼
0.17 ms71. Close to this latter threshold value the
separation becomes less and less perfect (the compart-
ments are never entirely diluted anymore) and for
af 4 0.17 ms71 the beads just spread out uniformly
over the two compartments. Mathematically, this
transition from the periodic behaviour of the clock
state to the steady uniform distribution is a reverse
Hopf bifurcation [33].

Just as the clustering phenomena of the previous
sections, also the granular clock effect can be described
(qualitatively and quantitatively) by the flux model,
provided that it is modified to account for the fact that
we now have two particle species, small and large,
which influence each other in a non-trivial way.
Various bidisperse flux functions have been proposed
in the literature [33,73,75,76,78,82]. The granular clock
is described particularly well by the phenomenological
models of [78] and [33].

6.2. David versus Goliath

The granular clock effect is not the only interesting
feature of bidisperse particle mixtures. As a second
example, in Figure 13 we show the phenomenon of
competitive clustering known as the David-versus-
Goliath effect [73,81,82]. We will keep the description
at a qualitative level, but also this effect admits a
quantitative treatment in terms of a bidisperse version
of the flux model [73,82].

The setup this time contains 300 large steel beads
(diameter dL ¼ 5.0 mm) and 600 smaller ones (dS ¼
2.5 mm), and in the initial state we have {180 large, 200
small} in the left compartment, and hence {120 large,

Figure 13. The David-versus-Goliath effect: competitive
clustering in a bidisperse mixture of large and small beads.
The initial condition (topmost picture) has {180 large, 200
small} in the left compartment and {120 large, 400 small} in
the right one, meaning that 55% of the total particle mass is
initially in the left compartment. For relatively strong shaking
(left column, f ¼ 60.0 Hz and a ¼ 1 mm) the cluster is formed
in the left compartment: Goliath wins. For mild shaking (right
column, f ¼ 37.5 Hz and a ¼ 1 mm) it goes into the right
compartment: David wins. For very strong shaking (not
shown) the particles spread evenly over the two
compartments, whereas for very weak shaking the particles
are unable to jump over the wall and the initial distribution
remains intact. From [82]. Reprinted figure with permission
from R. Mikkelsen et al., Phys. Rev. E, 70, 061307, 2004.
Copyright (2004) by the American Physical Society.
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400 small} in the right compartment. This means that
initially 55% of the total particle mass is in the left
compartment.

Starting out from this initial condition at shaking
parameters f ¼ 60 Hz and a ¼ 1 mm (i.e. af ¼
0.60 ms71), the beads cluster together in the left
compartment, see Figure 13 left column. This is what
one would expect, since the larger particle mass in the
left compartment gives this compartment a head start.
It takes about half a minute for the cluster to develop.

If we decrease the shaking below a critical thresh-
old, however, the same initial condition now leads to a
cluster in the right compartment! This is illustrated in
Figure 13 right column, for f ¼ 37.5 Hz and a ¼
1 mm (i.e. af ¼ 0.375 ms71). The series of events is
similar to what we saw in the granular clock: at first the
large particles stay close to the floor, transferring
energy from the vibrating bottom to the smaller ones
above them, which thereby gain relatively high
velocities. The effect is stronger in the left box – which
has more large particles – than in the right box, and
thus the small beads go preferentially into the latter.
As a consequence, the remaining particles in the left
compartment become more mobile as well and begin to
make it over the wall into the right compartment,
where they are immediately swallowed by the devel-
oping cluster. With every large particle that leaves the
left compartment, the process progressively speeds up
and (in the experiment of Figure 13, right column) the
clustering is complete after 15 min.

So, simply by tuning the shaking strength, the clus-
tering can be directed. This opens up new possibilities
for the handling and processing of bidisperse granular
materials in practical applications.

7. Conclusion

7.1. Summary, and a new beginning

In conclusion, we have seen that Maxwell’s demon
rules in granular gases. The flux model, based on
granular hydrodynamics, provides a quantitative
description of the clustering phenomenon not only in
the original two-compartment system, but also in the
various extended systems that we have discussed. For
more than two compartments the clustering was seen
to take place via a series of transient states in which the
various compartments competed for dominance. Via a
slight adaptation in the setup (an extra hole in the wall
between the compartments) we were able to make the
demon work for us, in the form of a granular fountain
and also in the form of a Brownian motor. Finally, by
introducing particles of different size into the system,
the demon was seen to give rise to the granular clock
and to the competitive clustering phenomenon known
as the David-versus-Goliath effect.

It will be clear that the generalisations and
applications of the Maxwell demon experiment are
by no means exhausted yet, especially when one
realises that these need not be restricted to granular
gases. The same ideas may be applied to any many-
particle system out of thermodynamic equilibrium. A
point in case is the formation of sand ripples along the
beach, which is well described by a similar flux model
[83]. An even more striking example – from an entirely
different field – concerns the formation of traffic jams,
i.e. the clustering of cars. We will briefly discuss it here
to underline the ubiquity of Maxwell’s demon in non-
equilibrium systems.

7.2. Maxwell’s Demon on the highway

Even though at first sight they may seem quite
unrelated, cars on the highway resemble in many ways
a one-dimensional, unidirectional granular gas. The
analogy is in fact so strong that it has led to a series of
bi-annual conferences ‘Traffic and Granular Flow’ [84].
The engines provide the necessary energy input (the cars
are self-driven particles) and just as the particles in a
granular gas, the cars interact inelastically. They do so
without actual collisions, but simply because a car that
closes in upon another must reduce its speed, as
illustrated in Figure 14(a). A tiny flaw in the analogy
is that momentum is not conserved here12 but the fact
remains that cars, just like particles, make each other
slow and traffic jams are the natural result [85,86].

The mean velocity v of the cars is a decreasing
function of their density r, as can be seen from the
experimental data in Figure 14(b), measured on the
highway A58 in theNetherlands, at a specific point close
to the city of Eindhoven. At low density, up to rk � 30
veh km71 lane71, the cars drive at their desired velocity
of roughly 110 km h71 (with quite a large spread, partly
due to the fact that the data include both passenger cars
and trucks). Above 30 veh km71 lane71 the distance
between successive cars becomes so small (less than 30
m) that the drivers can no longer maintain this desired
velocity. They have to react, brake, andmanoeuvre, and
this causes a sudden drop in the velocity.

The corresponding car flux across the measuring
point (density r times velocity v), also known as the
‘fundamental traffic diagram’ [85–87], is shown in
Figure 14(c). It shows the two regimes even more
clearly than the velocity itself: at low densities the cars
flow freely, and the flux function F(rk) shows an
upward branch rising to nearly 3000 veh h71 lane71 at
rk ¼ 30 veh km71 lane71. Above 30 veh km71 lane71

the traffic becomes congested, and the flux goes down
dramatically. Just like the granular flux function of
Figure 6, the car flux F(rk) depends in a non-monotonic
way on the density, which – as we have seen – is a
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crucial prerequisite for clustering. However, the data in
the (F,r)-plane do not follow a one-dimensional
function but are scattered over a two-dimensional
area, corresponding to various types of congested
traffic (synchronised flow, jams, etc. [88,89]). In this
case we therefore get a better correspondence if we
work with a two-dimensional flux function F(rk,rkþ1),
i.e. if we let it depend not only on the density at the
location k but also on that at the target location kþ1
(roughly 1 km ahead). This expresses the fact that
drivers react on the situation ahead of them. The flux
model for traffic then takes the following form:

drkðtÞ
dt

¼ 1

Dx
fFðrk�1; rkÞ � Fðrk; rkþ1Þg þQkðtÞ;

ð19Þ

where Dx ¼ 1 km is the distance between successive
measuring points and the term Qk(t) represents the
inflow and outflow of cars at junctions and ramps. This
term (which is non-zero only at certain locations k)
expresses a special feature of the traffic jam problem,
namely that the number of cars is not conserved.

Like the original Maxwell demon experiment, also
the traffic model can be extended to incorporate cars of
different size (differentiating between passenger cars
and trucks makes the model bidisperse) or to work with

different forms of the flux function at different points k
(since the road is not everywhere the same, due to e.g.
construction works, dangerous bends, or intersections).
But even the simple version of Equation (14) has been
proven able to reconstruct, and even predict, traffic jam
formation on the highway A58 in the Netherlands [86].
It also correctly describes the backward group velocity
of 18 km h71, one of the most robust characteristics of
traffic jams observed on all highways around the
world.13 In other words, Maxwell’s Demon rules on
the highway just as it does in granular gases.
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Notes

1. Due to the redirected forces, the pressure on the side
walls can become uncomfortably high. In the United
States alone some 1000 grain silos collapse every year
due to overpressure on the side walls.

Figure 14. Maxwell’s demon on the highway: (a) inelastic interaction of two cars. The white car has to adjust its speed to that of
the black car in front of it: {vA, vB} ! {v0A, v

0
B} ¼ {vB, vB}. (b) Speed of the traffic passing a certain monitoring point (k) on the

highway A58 in the Netherlands versus the local car density rk. Each point is a 5 min average of measurements of the morning
traffic collected during 15 working days without accidents or exceptional weather conditions in the autumn of 2001. (c) The
corresponding car flux (¼density times speed), also known as the fundamental traffic diagram. Note the similarity with the
particle flux function in Figure 6 (from [86]). Figures (b) and (c) reprinted with permission from Hoogendoorn et al., Traffic and
Granular Flow ’03, Springer, Berlin, 2005.
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2. The dimensionless number that measures the influence
of the ambient medium is the Bagnold number Ba,
defined as the ratio between a typical Newtonian force
acting on the particle (gravity, friction, collisions) and
the most relevant force from the medium (drag, lift). A
good choice in many cases is to take the gravitational
force and the Stokes drag force: Ba ¼ mg/3pZdv ¼
rsd

2g/18Zv, where Z is the dynamic viscosity of the
medium, d and rs are the diameter and material density
of the particles, and v is their characteristic velocity. For
Ba � 1 the influence of the medium may be neglected;
when Ba becomes of the order of 1 or smaller the
surrounding medium must be taken into account. For
the systems discussed in the present review, with glass
beads (rs ¼ 2.5 103 kg m73) of diameter d ¼ 2 1073 m
and typical velocity v ¼ 1 ms71, moving through air at
room temperature and atmospheric pressure (Z ¼ 1.86
1075 kg/sm), the value of the Bagnold number is
roughly 300.

3. Barchans are crescent-shaped dunes that form in desert
areas with a firm underground and a limited sand
supply where the wind blows in one prevailing
direction. They propagate in the direction of the wind
at a typical velocity of several tens of metres per year,
with smaller dunes moving faster than big ones
and occasionally overtaking them. For an intro-
duction to the extensive literature on barchan dunes
we refer to [16]. Also recommended are the beautiful
photographs by NASA of the barchan fields on Mars,
see e.g. [17].

4. An additional and slightly deeper reason for the
prominence of fluctuations is the fact that granular
matter has weak scale separation (or no separation at
all) between the microscopic and macroscopic scales,
see e.g. [20].

5. Since the setup is symmetric, it is a matter of chance
which of the two compartments will be preferred.

6. The analogy with thermodynamic temperature should
be handled with care, since the ensemble averages
implied in Equation (1) may not directly apply to single
realisations [20,30] and – if the system contains non-
identical particles – the lack of energy equipartition
between the various species may be a complicating
factor, with different species having different granular
temperatures [31–33].

7. Recent experiments suggest that this identification
ðTg ¼ 1

2mhv
2iÞ holds quite generally for vibrated gran-

ular gases of identical particles, and that (except for the
bottom layer) the velocity distribution is very nearly
Maxwellian throughout the system, see [34].

8. In this situation, the mean free path length ‘ of the
particles is of the same order as the system size and the
gas is called a Knudsen gas. If the dimensionless
Knudsen number Kn (defined as the ratio of the mean
free path to the system size) is of the order of 1 or
higher, the continuum assumption underlying fluid
mechanics is no longer a good approximation and
statistical methods should be used instead.

9. A non-cyclic array is described by the same Equation
(13), only modified at the end compartments k ¼ 1 and
k ¼ K. The results do not differ significantly from those
for a cyclic array [61].

10. Note that for K ¼ 2 the Brownian motor setup is simply
equivalent to the granular fountain of Figure 10.

11. For the analogy, the compartments of the ratchet
system should be compared pairwise (a cluster and

an adjacent dilute compartment) to the individual
magnetic domains in the piece of ferromagnetic
material.

12. The interactions in a granular gas conserve mass and
momentum (but not energy), whereas in traffic only
mass is conserved. This is a source of difference between
granular and traffic flow – and obviously it is not the
only one. So the resemblance between the two types of
flow may be strong but it is not quite perfect, and one
should remain cautious as to how far the analogy can
be stretched.

13. This backward velocity can be understood as follows:
on the average, the cars in a dense jam occupy 7.5 m
each, and they leave the front of the jam at a rate of
one per 1.5 s (the combined reaction time of driver
and car). So the front of the jam moves back-
ward at a speed of 7.5 m per 1.5 s ¼ 5 ms71, which is
18 km h71.
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