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This paper is about mode interaction in systems of coupled nonlinear oscillators. The main ideas are
demonstrated by means of a model consisting of two coupled, parametrically driven pendulums. On
the basis of this we also discuss mode interaction in the Faraday experiment~as observed by
Ciliberto and Gollub! and in running animals. In all these systems the interaction between two
modes is seen to take place via a third mode: This interaction mode is a common daughter, born by
means of a symmetry breaking bifurcation, of the two interacting modes. Thus, not just any two
modes can interact with each other, but only those that are linked~in the system’s group-theoretical
hierarchy! by a common daughter mode. This is the quintessence of mode interaction. In many cases
of interest, the interaction mode is seen to undergo further bifurcations, and this can eventually lead
to chaos. These stages correspond to lower and lower levels of symmetry, and the constraints
imposed by group theory become less and less restrictive. Indeed, the precise sequence of events
during these later stages is determined not so much by group-theoretical stipulations as by the
accidental values of the nonlinear terms in the equations of motion. ©2001 American Association of

Physics Teachers.
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I. INTRODUCTION

The world is full of coupled oscillators. One may think fo
instance of atoms in a crystal, vibrating around their latt
positions; or giant swarms of male fireflies flashing in perf
unison to attract females;1 or even our own heart–lung
system.2 The physics of such systems is incredibly rich, a
it is no wonder that they are the subject of much resea
One of the problems of interest ismode interaction, i.e., the
interaction between two or more basic modes of the syst
During the last decade much insight has been gained into
way this interaction takes place, and that is what this pape
about.

If the oscillators~and the coupling between them! happen
to be linear, everything is very simple: There isno interac-
tion between the modes, because there are no mode-m
terms in the Hamiltonian when written in terms of the no
mal modes. Any motion in the system is just a linear sup
position of the normal modes. If the oscillators are nonline
however, the problem is much more complicated. In t
case, the standard way to proceed is a frontal attack of
equations of motion. This gives detailed information abou
particular system, but if one is interested in the general f
tures of mode interaction, valid for all systems, a more c
ceptual viewpoint is required. The essence of the interact
as we shall see, lies in thesymmetryof the modes, and is bes
formulated in the language of group theory. This will b
done in Sec. III.

Before we come to that, we first~in the present section!
want to say something about the phenomenology of m
interaction, and in Sec. II we present a model system, c
sisting of only two pendulums and a spring. The group t
oretical argument is given in Sec. III. In Sec. IV the validi
of the argument is tested on a lively, seemingly far-fetch
system~a galloping horse! and finally, in Sec. V, we make
some concluding remarks.
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Everyone who has ever put a cup of tea on a wash
machine~vibrating, say, with a vertical amplitudea and fre-
quencyf ! has performed the celebrated Faraday experim
dating back as far as 1831.3 With a little luck one may have
witnessed the formation of stable wave patterns on the fl
surface, and that is precisely the gist of the experiment. T
examples of such patterns, or modes, are sketched in Fi
The modes oscillate athalf the washing machine’s frequenc

( 1
2 f ) and are excited parametrically, in much the same w

as the resonant oscillation of a parametric pendulum.
The parametric pendulum, depicted in Fig. 2~a!, is a pen-

dulum that is being moved up and down at its point
suspension.4–6 If the motion of this point is given byz(t)
52a cosVt, the equation of motion takes the form:

q̈1gq̇1
1

l
~g1aV2 cosVt !sinq50. ~1!

This is the usual pendulum equation,q̈1(g/ l )sinq50, plus

a few extra terms. The termgq̇ represents the unavoidab
dissipation in the system~here taken to be a viscous dampin
in the point of suspension!, and the driving is seen to man
fest itself as a modulation of the gravitational accelerationg.

The downward equilibrium motion, or 0 motion, in whic
the pendulum simply goes up and down with the point
suspension, corresponds to a flat surface in the cup of te
is usually stable butnot for combinations ofa andV within
the tongue-shaped regions in Fig. 2~b!. ~This is the well-
known stability diagram of the damped Mathieu equation,7 to
which Eq.~1! reduces if one sets sinq5q, as usual for small
perturbations from the downward equilibrium!. Within these
regions, small deviations from the 0 motion do not die o
but are excited into an oscillatory motion. The main res
953g/ajp/ © 2001 American Association of Physics Teachers
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nance occurs aroundV52Ag/ l , i.e., at twice the natura
frequency of the pendulum. As a consequence, the most
portant oscillations of the parametric pendulum~or of the tea
surface! all have period 2T, whereT is the periodicity of the
driving. Higher-order resonances are centered around
values V5(2/n)Ag/ l , with n52,3,4,..., but these are o
much lesser importance.

So let us have a closer look at the main tongue. That is
us follow a path through it as indicated in Fig. 3~a!, adjusting
the control parametersa andV in tiny steps, each time wait
ing until the pendulum has settled in its new steady moti

Fig. 1. Two surface patterns of the vibrating cup of tea~the Faraday experi-
ment!. Each pattern is characterized by two numbers, related to the num
of maxima in the angular and radial directions, respectively.

Fig. 2. ~a! The parametric pendulum and~b! its stability diagram; the down-
ward equilibrium is unstable for driving parametersa and V within the
tongue-shaped regions. The dashed contours indicate the position o
regions of instability in the absence of dissipation.
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First we follow the path in thecounterclockwisedirection,
i.e., from right to left. Outside the tongue the pendulu
settles in the 0 motion, which is stable there, but as soon
we cross linea it undergoes a period doubling bifurcation8

and starts to perform the so-calleda oscillation@sketched in
Fig. 3~b!# with twice the driving period. Continuing our pat
through the (a,V) plane we find that, at lineb, the 0 motion
becomes stable again; this is the result of a second pe
doubling bifurcation, in which the unstableb oscillation of
Fig. 3~b! is born. Now the pendulum has two stable motio
to choose from~a and 0!. If the experiment is performed
gently enough, however, it will stay in thea oscillation. Fol-
lowing the path further, thea andb oscillations are seen to
grow toward each other. At the dash-dotted line they m
and annihilate each other~a reverse saddle-node bifurcation8!
and after that the pendulum has no other choice than to
back to the 0 motion. The corresponding bifurcation diagr
is given in Fig. 3~c!. The bent curves are a clear reminder
the nonlinearity of the system: In a linear model—where
frequency of an oscillator, or a mode, does not depend on
amplitude—the linesa and b would go straight upwards
without ever meeting each other.

If we turn in our tracks and pursue the path in Fig. 3~a! in
theclockwisedirection, we witness a fine example of hyste
esis, with a sudden jump from the 0 motion to a we
developeda oscillation upon crossing lineb.

er

the

Fig. 3. ~a! The path through the resonance tongue,~b! the a andb oscilla-
tions, and~c! the corresponding bifurcation diagram@i.e., amplitude of the
various oscillatory motions vs position along the path in~a!#. The distinction
between thea andb oscillations lies in their different phases with respect
the driving: The former reaches its amplitude shortly before the driving g
through itslowestposition while the latter reaches its amplitude shortly af
the driving goes through itshighestposition.
954J. P. van der Weele and E. J. Banning



a

is
d
m
o

th
-
he
ar

nc
ys

in
f

r-

nal
h

en-

ntly

l

the
r-
s

re

t,
ory
ere
vel,

hat
ge

ling

ay
om
ons
n

f-
ral

the

rs
e
t

-
in
s
fa

g of
The surface patterns in the Faraday experiment are cre
by the same kind of resonance.9–12 When Ciliberto and
Gollub9 performed the experiment in 1984 under prec
laboratory conditions~with pure water instead of tea, an
using the cone of a loudspeaker instead of a washing
chine! they found a whole series of tongues, every one
them corresponding to a different mode. In Fig. 4~a! a small
portion of the (a,V) plane is reproduced,9 showing the
tongues that correspond to the modes of Fig. 1. Within
white regions labeled~4,3! and ~7,2! they appear as indi
vidual modes, and in the intermediate hatched region t
interact, giving rise to a wave pattern which contains ch
acteristics of both the fourfold and the sevenfold mode~with-
out, however, being a simple superposition of the two, si
the superposition principle does not hold in a nonlinear s
tem!.

Figure 4~b!, corresponding to the choice of parameters
dicated by the small cross in Fig. 4~a!, gives an impression o
the interaction. The two curves represent the intensitiesP(4)
and P(7), obtained by spatial Fourier analysis, of the fou

Fig. 4. ~a! The (a,V) diagram of the Faraday experiment~after Ref. 9!. We
concentrate on the interaction between the~4,3! and ~7,2! modes, but the
diagram shows that similar interactions also occur between other pai
modes.~b! The slowly varying heights of the peaks in the angular pow
spectrum associated with the sevenfold and the fourfold symmetries in
surface pattern, denoted asP(7) andP(4), after Ref. 9. The driving param
eters area599mm andV52p f 5101.3 rad/s, marked by the small cross
4~a!. If one follows the path indicated by the arrow, the signal undergoe
series of period doubling bifurcations, becomes chaotic, and eventually
back upon the~4,3! mode.
955 Am. J. Phys., Vol. 69, No. 9, September 2001
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fold and the sevenfold components in the pattern; the sig
oscillates with a periodicity of approximately 15 s, wit
P(4) trailing one-quarter of a period behindP(7). The mo-
tion is said to be quasiperiodic, since its period is incomm
surate with the driving period~0.062 s!. This is typical limit-
cycle behavior and it means that the system has appare
gone through a Hopf bifurcation.8 Now, proceeding from the
situation of Fig. 4~b!, and carefully following the path indi-
cated in Fig. 4~a!, Ciliberto and Gollub found that the signa
undergoes a period doubling bifurcation~after which its pe-
riod is about 30 s!, and a second one~bringing the period to
60 s!, and soon thereafter becomes chaotic.9 Thus, in this
case, mode competition leads to chaos, and that is exactly
title of their original paper. Eventually, if one proceeds fu
ther into the ~4,3! tongue, the chaotic interaction break
down and the fluid surface then ‘‘falls back’’ onto the pu
~4,3! pattern. So the entire sequence is:

~7,2!→ limit cycle→period doublings→chaos→~4,3!.

This is all very beautiful, but also quite puzzling. Firs
why does the mode interaction take place within the territ
of ~7,2! and not, as might be expected, in the region wh
the two tongues overlap? Second, on a more technical le
how can a pure mode such as~7,2! undergo a Hopf bifurca-
tion to a limit cycle? The answer to the latter question is t
it cannot.12,13 That is, there must be an intermediate sta
between the~7,2! mode and the limit-cycle interaction.~The
later stages of the sequence, including the period doub
route to chaos, are all in good order!.

To clarify these points it is not very convenient to st
with the cup of tea with its innumerable degrees of freed
and its notoriously hard-to-tackle Navier–Stokes equati
~see, however, Refs. 10–12!. Rather, we construct our ow
model, with just two degrees of freedom~the minimum num-
ber required! and relatively simple equations of motion. A
ter all, it is not the tea we are interested in, but the gene
phenomenon of mode interaction.

II. THE TWO-PENDULUM MODEL

The mechanical system depicted in Fig. 5 is arguably
simplest model for studying nonlinear mode interaction.13–16

Indeed, it was especially devised for this purpose.14 It con-

of
r
he

a
lls

Fig. 5. A mechanical model to demonstrate mode interaction, consistin
two parametrically driven pendulums coupled by a torsion spring.
955J. P. van der Weele and E. J. Banning
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sists of two identical pendulums coupled by a torsion spri
and is driven~parametrically! by the periodic up-and-down
motion of the bar of suspension. The equations of mot
are, including dissipation:15

q̈11gq̇11
1

l
~g1aV2 cosVt !sinq11 f ~q1 ,q2!50,

~2!
q̈21gq̇21

1

l
~g1aV2 cosVt !sinq22 f ~q1 ,q2!50.

Here f (q1 ,q2) is a function representing the coupling b
tween the two pendulums. We take it to be slightly nonline
~which is the most natural choice and, as it happens,
quite essential for our purposes!:16

f ~q1 ,q2!5K~q12q2!1L~q12q2!3, ~3!

with L considerably smaller thanK, say K51.0 s22 and L
50.1 s22. The length of the pendulums~l! is chosen to be 1
m. In the present paper we consider only the dissipative c
~with g'0.1 s21! to make the link with practical application
such as the cup of tea as direct as possible. For the co
vative case (g50), which is also very worthwhile, we refe
to Refs. 13–16.

The system has two basic oscillatory modes: one in wh
the pendulums swing in phase with each other and ano
one in which the pendulums move in counter-phase. The
one is very similar to the one-pendulum oscillation discus
in the previous section. In particular, it has the same eig
frequency, since the~unstretched! spring does nothing to
speed up or slow down the oscillation. The second mode
a somewhat higher eigenfrequency, because the motio
sped up by the torsion spring. Accordingly, each of the re
nance tongues of the system is split into two as shown in
6. In the same figure we have sketched the variousa andb
oscillations which bifurcate from the 0 motion at the borde
of the main double tongue.

As before, we follow a path through this double tong
@see Fig. 7~a!#, slowly changing the parametersa andV, and
we choose to go in the counterclockwise direction. We
ready know how the stability of the 0 motion changes alo
this journey. First it is stable~as indicated by a solid line in

Fig. 6. The stability diagram for the 0 motion of the two-pendulum mod
The 0 motion is unstable for driving parametersa andV within the tongue-
shaped regions, and at the boundaries of these regions it gives birth~via a
period doubling bifurcation! to the various oscillatory modes depicted.
956 Am. J. Phys., Vol. 69, No. 9, September 2001
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the bifurcation diagram! and then, when we cross line 2a, it
becomes unstable with respect to perturbations in
counter-phase direction while still retaining its stability in th
in-phase direction~this semi-stability is indicated by a
dashed line!. Upon crossing 1a, it loses its stability in the
in-phase direction as well, so here it becomes fully unsta
~indicated by a dotted line!. The stability in the counter-
phase direction is regained at 2b ~the line becomes dashe
once more! and the stability in the in-phase direction at 1b
~where the line becomes solid!.

Now, one might be tempted to guess that the whole bif
cation diagram is just twice the old one-pendulum structu
If that were true, one would get the bifurcation diagram
Fig. 7~b!. However, this diagram contains two bifurcation
impossibilities:8 the 1a branch, at the point where it bifur
cates from the 0 motion, should be semi-stable~dashed! and
the 2b branch fully unstable~dotted!. In the real bifurcation
diagram@Fig. 7~c!# these shortcomings are cured by the cro
branch denoted as MP.~MP stands for mixed phase, becau
in this mode the pendulums swing neither in phase nor
counter-phase; see Sec. III!. Very conveniently, and in the
same stroke, this cross branch establishes a link betwee
1a and 2b modes, i.e., amode interaction. With its Hopf
bifurcation and subsequent period doublings, which lead

.

Fig. 7. ~a! The path through the double resonance tongue,~b! the hypotheti-
cal ~wrong!! bifurcation diagram obtained from applying the singl
pendulum diagram twice, and~c! the true bifurcation diagram. The mod
interaction is established by the cross branch~denoted by MP! connecting
1a and 2b. The circular loops around~the unstable part of! the MP branch
represent a quasiperiodic oscillation, which undergoes a period-doub
bifurcation and eventually becomes chaotic.
956J. P. van der Weele and E. J. Banning
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chaos, this interaction is obviously of the same type as
observed by Ciliberto and Gollub in the Faraday experime
It is intrinsically nonlinear: The cross branch~let alone the
transition to chaos! would not be present in a linear mode

The interaction scenario depicted in Fig. 7~c! is not the
only one conceivable. Equally possible is the interaction
picted in Fig. 8, consisting of an unadorned cross bran
without any extra bifurcations, and no transition to chaos
an experimental situation, this interaction would go by unn
ticed, since the cross branch is unstable along its en
length.

Which scenario turns up in practice is determined by
nonlinear coupling term in the equations of motion.16 If the
coupling is soft@i.e., if the coefficientL in Eq. ~3! is nega-
tive# we get the simple scenario of Fig. 8, but a usual tors
spring is hard (0,L!K) and then we get the more interes
ing scenario of Fig. 7~c!.17 The point at which the bifurcation
from 1a to MP occurs is insensitive to the value ofL, be-
cause the stability of the 1a motion ~in which the spring is
not wound up! is not affected by the nonlinear coupling term
The bifurcation from the 2b branch, on the other hand,
extremely sensitive to the value ofL. For increasingL the
bifurcation point sweeps toward the right of the bifurcati
diagram, and it is this circumstance that brings about
shift from one interaction scenario to the other.

Let us return to the path we were following through t
(a,V) plane, around the intersection point of the tongu
@see Fig. 7~a!#, bearing in mind that forL50.1 K we have to
do with the scenario of Fig. 7~c!. Now, what would we see o
the interaction in an experimental situation, when only
stable motions count? The answer depends strongly
whether one goes in the clockwise or the counterclockw
direction.

The counterclockwisedirection is rather uneventful: We
first meet the stable 2a motion and~since we change the
driving parameters very slowly, avoiding any unnecess
jumps! we staywith it along the whole length of the path.
simply does not become unstable.

In theclockwisedirection, things are much more entertai
ing @see Fig. 9~a!#. Starting with the stable 1a motion we first
witness, at the line denoted by MP, a symmetry break
bifurcation to a stable MP mode. This MP mode sub
quently becomes unstable by means of a Hopf bifurcat
which introduces an additional periodicity into the motion.
general, this periodicity is not a rational multiple of the p
riod already present (2T), and the newly born motion will be
quasi-periodic. In ~stroboscopic! phase space such a motio
takes the form of a limit cycle15,16 and that is why in Fig.

Fig. 8. The simplest scenario for mode interaction in the two-pendu
system, consisting of an unadorned cross branch. This is the scenario
occurs if the torsion spring between the two pendulums is chosen to
soft one, i.e., ifL,0 in Eq. ~3!.
957 Am. J. Phys., Vol. 69, No. 9, September 2001
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9~a! it has been represented by a circular loop. This lim
cycle subsequently undergoes a series of period doubling
furcations and ends up as a chaotic attractor. When this
tractor eventually loses its stability, the pendulums fall ba
to the first attracting motion that presents itself, which ha
pens to be the 2a motion. So what we see in our experime
is the following sequence:

1a→MP→limit cycle→period doublings→chaos→2a.

This is summed up in Fig. 9~a!, where the shading represen
@as in Fig. 4~a!# the interaction region, including the chaot
regime. Note that the problem of the missing link betwe
the pure mode and the limit cycle has been resolved: It is
MP mode. Actually, it isthis mode that is at the heart of th
whole interaction, and we will come back to it in Sec. III.

If we translate the above results to the Faraday exp
ment, we get the diagram of Fig. 9~b!, which is clearly very
similar to Fig. 9~a!. There is only one difference worth men
tioning, namely the orientation of the two pictures. Where
in the two-pendulum system the pure modes are born tow
the left, in the Faraday experiment they are born toward
right. This is because the pendulum modes happen to besoft
ones, which means that their amplitudes grow in the dir
tion of decreasingV,16 whereas the corresponding flui
modes arehard, and grow in the opposite direction.11,12As a

hat
a

Fig. 9. ~a! The bifurcation diagram, and the corresponding ‘‘experiment
sequence of events in the (a,V) plane, which one gets if one follows th
path indicated~around the intersection point of the tongues!, starting from
the 1a mode.~b! The same for the Faraday experiment@starting from the
~7,2! mode, alias 2b#. In order to facilitate the comparison with the two
pendulum model we have indicated with which of the pendulum motions
various fluid patterns correspond. The shaded region in the (a,V) plane is
the domain of mode interaction@including the regime of chaotic interaction
cf. Fig. 4~a!#. In the bifurcation diagrams, the circular loops around~the
unstable part of! the MP branch correspond to a quasiperiodic interact
mode, which undergoes a period-doubling bifurcation and eventually
comes chaotic@cf. Fig. 7~c!#.
957J. P. van der Weele and E. J. Banning
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result, the complete bifurcation diagram, including the mo
interaction ~and the path one has to follow around t
tongues’ intersection point!, has its direction reversed. Tha
is why Ciliberto and Gollub had to go in thecounterclock-
wise direction. In the clockwise direction they would hav
witnessed an abrupt transition from~4,3! to ~7,2! without any
intermediate mode interaction.

In closing the present section, we note that the ques
why the interaction region@i.e., the shaded region in th
(a,V) plane# does not coincide with the overlap region
the tongues, has vanished into thin air. The overlap regio
determined by the bifurcations of two pure modes~1a and
2b! from the 0 motion, whereas the interaction region
associated with the bifurcation of the MP motion from the
pure modes. Only at the intersection point~where all these
bifurcations happen to occur simultaneously! do the overlap
region and the interaction region necessarily coincide.

III. SYMMETRY CONSIDERATIONS: THE NATURE
OF THE INTERACTION MODE

A. The two-pendulum system

We have now come to the central section of the paper
which it will be shown how the essence of mode interact
can be captured in terms of symmetry. We will do so both
the Faraday experiment and for the two-pendulum mo
and we start with the latter, because it is the simpler of
two.

For our purposes, it is sufficient to consider the followi
three symmetries~in particular, we do not need to take int
account the rotational symmetry of the pendulums!.

1. Reflection (R)

This symmetry represents the fact that it does not m
any difference for a~single! pendulum whether it swings
toward the right or to the left. The corresponding transf
mation that leaves the equations of motion unchanged is

~q1 ,q̇1 ,q2 ,q̇2 ,t !→
R

~2q1 ,2q̇1 ,2q2 ,2q̇2 ,t !. ~4!

2. Exchange (E)

This symmetry represents the fact that the two pendulu
are identical and that it does not matter which one is calle
and which is called 2. The corresponding transformation
simply an exchange of the indices:

~q1 ,q̇1 ,q2 .q̇2 ,t !→
E

~q2 ,q̇2 ,q1 ,q̇1 ,t !. ~5!

3. Time translation (T)

The driving is periodic, so the equations of motion a
unaltered by a time translation over one driving periodT
52p/V. The corresponding transformation is:

~q1 ,q̇1 ,q2 ,q̇2 ,t !→
T

~q1 ,q̇1 ,q2 ,q̇2 ,t1T!. ~6!

The symmetry operationsR andE are their own inverse, i.e.
applying them twice yields the identity~1!. So in both cases
the operation plus the identity~$R,1% and $E,1%, respec-
tively! comprise a cyclic group consisting of two elemen
commonly denoted asZ2 .18 The third symmetry operation
~T! also generates aZ2 group if we restrict ourselves to
958 Am. J. Phys., Vol. 69, No. 9, September 2001
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periodic motions of period 2T ~and identify t50 with t
52T!; in the present context this can hardly be called a
striction since all the oscillations taking part in the mo
interaction have period 2T. The three operationsR, E, andT
may be applied to the system~i.e., the equations of motion!
independently of each other, and in any desired order, so
arrive at the symmetry groupZ2(R)3Z2(E)3Z2(T).

The only motion that is invariant under all three operatio
is the 0 motion, and to a group theorist this motion mu
certainly be the most perfect and beautiful of all.~The 0
motion is even more symmetrical than suggested here, s
we deliberately regard it as having periodicity 2T, while it
actually repeats itself after every driving periodT: the pen-
dulums simply go up and down with the bar of suspensio!.
The other motions are all less symmetrical. For instance,
1a oscillation is invariant under the exchange transformat
E and thecombinedoperationRT, but not underR or T
independently. It thus has symmetry groupZ2(E)
3Z2(RT), which is a subgroup of the originalZ23Z23Z2

group.18 Likewise, each oscillation of period 2T falls in one
or the other subgroup, which together form the so-cal
isotropy lattice depicted in Fig. 10. The perfect symmetry
the 0 motion~at the top of the hierarchy! can be broken step
by step, by means of symmetry breaking bifurcations, u
one reaches the bottom of the lattice. The oscillations at
lowest level have none of the above symmetries anymor

The first step brings the 0 motion to one of the ‘‘pure
modes: that is, either toZ2(RT)3Z2(E), corresponding to
1a and 1b, or toZ2(RT)3Z2(ET), corresponding to 2a and
2b. ~Of course, thea andb versions of the modes belong t
the same symmetry class, otherwise they would never

Fig. 10. The symmetry hierarchy~for 2T-periodic oscillations! of the two-
pendulum system, in shorthand notation. The second level contains the
modes. At the third level~which, among others, contains the interactio
mode MP! it becomes possible to break away from the 2T periodicity, via
either a period doubling~pd! or a Hopf bifurcation.
958J. P. van der Weele and E. J. Banning
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able to annihilate each other!. These pure modes are st
quite symmetrical. Too symmetrical in fact to admit any e
cape from the lattice~to motions beyond period 2T! by either
a period doubling or a Hopf bifurcation:13 They haveto un-
dergo a symmetry breaking bifurcation, bringing us to t
third level in the lattice. It is at this level that Hopf bifurca
tions@for the oscillations withZ2(ET), Z2(RT) or Z2(RET)
symmetry# or period doublings@for those withZ2(RE) or
Z2(E) symmetry# and the associated routes to chaos c
come into play.13–16 It is also at this level that the mod
interaction takes place: The pure modes have a com
daughter, withZ2(RT) symmetry, and it is throughher that
they interact.

Mode interaction is conceivable between any two p
modes in Fig. 10~as, in fact, between any two modes th
share a daughter in the hierarchy! but only the interaction
between the 1a and 2b modes has actually been observe
This has to do with the fact that this pair is ‘‘anchored’’~to
the 0 motion! at the intersection point of the two tongue
which serves as a nucleation point for the mode interact
The other pairs lack such a nucleation point. In more tech
cal terms, it is called a critical point of codimension 2, mea
ing that two linear instabilities occur simultaneously. Inde
the connection between the existence of such a point and
appearance of mode interaction is so direct that so
authors12 simply identify the two, calling any point of this
kind a ‘‘mode interaction point.’’

In Fig. 11, which is an enlargement of the crucial part
the symmetry lattice, we have drawn the 1a and 2b modes
together with their common daughter. The latter has b
given a name already in Fig. 7~c!, namely MP, which stands
for mixed phase; this is because it possesses neitherE nor
RE symmetry, i.e., the pendulums swing neither in phase
in counter-phase but in a kind ofmixedphase. A good way to

Fig. 11. The main actors in the mode interaction:~a! the 1a motion, ~b! the
2b motion, and~c! their common daughter, the MP motion. Also shown a
the corresponding phase pictograms, i.e., the ‘‘clocks’’ that indicate
phase difference between the two pendulums.
959 Am. J. Phys., Vol. 69, No. 9, September 2001
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represent the phase relations between the pendulums i
means of so-called phase pictograms, i.e., the little ‘‘clock
in Fig. 11. The arm of each clock makes one revolution
2T seconds. In the 1a mode the arms move in phase wi
each other, in the 2b mode they move in exact counter-phas
and in the MP motion they have some intermediate ph
difference.

It is tempting to interpret the MP motion as a superpo
tion of 1a and 2b, but this is in fact a misrepresentation fo
at least three reasons. First, the superposition principle d
not hold in a nonlinear system. Second, it would suggest
the MP motion can be stable only when~both! its parents are
stable, but this is in plain contradiction with the facts. Thir
the MP motion is separated by a bifurcation from its paren
so it really is a mode in its own right. In this context it
perhaps good to note that the nonlinear nature of the in
action, which shows up so clearly in the bifurcation diagra
is of no concern to the symmetry lattice. The lattice does
discriminate between linear and nonlinear systems, as l
as they have the same overall symmetry. But the fact is
a nonlinear system makes much more creative use of
possibilities offered by the lattice.@In particular, if the sys-
tem were linear theRT subgroup would indeed stand fo
nothing more than a simple superposition~not an interaction!
of the two pure modes.#

B. Faraday’s cup of tea

How does all this work out for the cup of tea? Well,
begin with, the symmetry structure of the Faraday expe
ment differs somewhat from that of the two-pendulum mo
~which is rather fortunate, since it makes it easier to s
which parts of our discussion are generally valid and wh
are not!. The time-translation symmetryZ2(T) is the same,
but the spatial symmetriesZ2(R)3Z2(E) are replaced by
O(2), theorthogonal group in two dimensions, which sa
that the~circular! surface of the fluid is invariant under a
continuous rotations around the center, and all mirror refl
tions in axes that pass through the center.18 The subgroups of
O(2)3Z2(T) that correspond to the~4,3! and ~7,2! modes
have been sorted out by Crawford, Knobloch, and Rieck12

and turn out to beD(M ,(2p/8)T) and D(M ,(2p/14)T).
Here D(M ,(2p/k)T) is a dihedral group generated byM ,
which is a mirror reflection in a properly chosen axis, a
the element (2p/k)T, which represents a rotation ove
2p/k rad combined with time translation over one drivin
period. The symmetry of the pure modes does not all
them to undergo a Hopf bifurcation12,13 so there can be no
question of a time-varying interaction@as in Fig. 4~b!# before
they have undergone a symmetry breaking, bringing us to
third level of the isotropy lattice in Fig. 12. Here we se
something new: The modes~4,3! and ~7,2! have two com-
mon daughters and can interact via any one of them.
daughters are fairly alike; their symmetry groups indica
that the ‘‘properly chosen’’ axis of reflection remains fixed
both cases, implying that the associated wave patterns h
no azimuthal drift. Both modes can undergo a Hopf bifurc
tion ~which preserves theZ2 symmetry! and thus give birth
to the more complicated interaction form of Fig. 4~b!.8,12The
only difference between them is that one@Z2(M )# is invari-
ant under mirror reflection, and the other one@Z2(MT )# is
invariant under thecombinedoperation of mirror reflection

e
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and time translation. Ciliberto and Gollub did not spec
whether they were dealing withZ2(M ) or Z2(MT ) symme-
try, but theydid mention that the interaction patterns had
azimuthal drift.

What is more surprising, at least at first sight, is that th
observed neither of the two daughters at all~the third level of
the lattice in Fig. 12!, whereas theseshouldhave come be-
tween the~7,2! mode and the quasi-periodic interaction
Fig. 4~b!. One explanation may be that the associated zon
the (a,V) plane is quite narrow, which means that the int
action mode in this zone is still almost indistinguishab
from the ~7,2! mode ~even more so because they have
same periodicity 2T!. The explanation may also be sought
slight imperfections in the symmetry of the experimen
setup. These would cause an unfolding of the symme
breaking bifurcation, turning the transition from the pu
mode to the interaction mode into a gradual one. In that c
it becomes meaningless to distinguish between the two: T
would belong to the same symmetry class, and would fo
an uninterrupted branch in the bifurcation diagram. If t
symmetries are intact, however, the 2T-periodic interaction
zone~however small! must be there.

In any case, the general rule for nonlinear mode inter
tion is that two modes interact via a common daughter mo
It is this rule that makes the mode interaction in the tw
pendulum system@Fig. 9~a!# so similar to that in the Farada
experiment@Fig. 9~b!#. Thus, as anticipated in the introdu
tion, the results of Ciliberto and Gollub can be understo
~and even supplemented! by means of the two-pendulum
model.

We could stop here, but that would be a pity. Until now w
have been talking about only two systems, but the ‘‘gene
rule’’ formulated above would hardly deserve that name i
would not apply to a multitude of other systems too. Let
therefore discuss an example of mode interaction that co
from an entirely different field: animal gaits.

Fig. 12. The symmetry hierarchy for the~4,3!–~7,2! mode interaction in the
Faraday experiment~after Ref. 12!. As in Fig. 10, we have also indicated th
escape routes from the lattice, via period doubling~pd! and Hopf bifurca-
tions.
960 Am. J. Phys., Vol. 69, No. 9, September 2001
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IV. ANIMAL GAITS

The legs of animals are among the finest coupled osc
tors to be found in nature, and the oscillation patterns~or
‘‘gaits’’ ! used in locomotion are singularly fascinating.19–29

It does not matter whether the animal has two legs~ostrich!,
four ~horse!, six ~ant!, eight ~spider! or more ~centipede!,
each has its own charm. Also the more unusual cases wit
odd number of legs are very interesting; in Ref. 22 a thr
legged dog is discussed, and in Ref. 25 a man with a walk
stick. Fortunately for us,N-legged locomotion can be de
scribed quite adequately byN parametrically driven pendu
lums. For instance, two-legged locomotion~if one is willing
to disregard the effects of arms, tails, etc.! is described by
our two-pendulum model: Humans normally use a 2 mode,
whereas a jumping kangaroo uses a 1 mode.

Things get more interesting with four legs. The paragon
quadrupeds is undoubtedly the horse, which is able to
form an amazing variety of gaits: walk, trot, gallop, canter,
name just a few. Modern gait analysis began with the t
The story goes22 that in the 1870s two rich Americans, Sta
ford and McCrellish, had a bet~for no less than $25,000!
over the placement of the feet of a trotting horse. Stanf
asserted that there were moments when the horse had a
its feet off the ground, and McCrellish disputed this. Now,
is virtually impossible to settle this question with the nak
eye, so they called in the help of a photographer nam
Muybridge, who invented the ‘‘zoopraxiscope’’~a series of
interconnected cameras! to produce the first movie of a trot
ting horse. Figure 13 shows four pictures from this mov
which—understandably—delighted Stanford more th
McCrellish.30

Our model of a horse, or more generally of any fou
legged animal, is shown in Fig. 14. It is a natural extens
of our two-pendulum model, consisting of four pendulum
coupled by various springs. Experienced gait analysts
notice that it is closely related to the ‘‘type 2’’ quadruped
Refs. 22 and 23. The major difference is that we have ad
an explicit, parametric driving.~The authors of Refs. 22 an
23 did not use pendulums but limit-cycle oscillators of t
Van der Pol type, which means that the periodicity in th
system was introduced by means of a Hopf bifurcation!. The
driving represents the signal from the brain~or perhaps some
other part of the nervous system! that tells the animal to run
and, since it is parametric, the principal gaits it produces w
have twice the driving period. The model is something o
caricature, to be sure, but the results turn out to be rem
ably realistic.

The corresponding equations of motion are:

Fig. 13. A trotting horse, as photographed by Muybridge~from Ref. 19!.
960J. P. van der Weele and E. J. Banning
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q̈11gq̇11
1

l
~g1aV2 cosVt !sinq11 f B~q1 ,q2!

1 f A~q1 ,q4!50,

q̈21gq̇21
1

l
~g1aV2 cosVt !sinq21 f B~q2 ,q1!

1 f A~q2 ,q3!50,
~7!

q̈31gq̇31
1

l
~g1aV2 cosVt !sinq31 f B~q3 ,q4!

1 f A~q3 ,q2!50,

q̈41gq̇41
1

l
~g1aV2 cosVt !sinq41 f B~q4 ,q3!

1 f A~q4 ,q1!50.

The numbering of the legs is as in Fig. 14, and the indiceA
andB indicate that the cross-wise springs are different fr
the springs along the sides of the animal. This set of eq
tions may look somewhat forbidding, but one thing at leas
clear: Just like any system of four coupled oscillators, o
model has four basic modes. And these modes are assoc
with four tongues of resonance in the (a,V) plane, as shown
in Fig. 15, where we have also included the correspond
phase pictograms.

The first, slowest basic mode is the one in which all t
pendulums move in phase with each other, as if they w
one single object~the springs are inactive!. The angular
eigenfrequency of this mode is precisely the same as tha
one single pendulum~namelyAg/ l !, which means that the
tongue originates atV52Ag/ l . In the second and third
tongues half of the springs~two out of four! are active. The
front–hind version originates atV52Ag/ l 12KB, and the
left–right version atV52Ag/ l 12KA, so the order of these
two depends on the relative strength ofKA andKB . In Fig.
15 we have taken the cross-springs~A! to be somewhat stron
ger than the longitudinal~B! springs, but~depending on the

Fig. 14. Our model of a four-legged animal. We have indicated the f
symmetry operations of this~idealized! system:A is the left–right ex-
change,B the front–hind exchange,R denotes reflection of the pendulum
and T is time translation over one driving period. The head and tail
supposed to be massless.
961 Am. J. Phys., Vol. 69, No. 9, September 2001
a-
s
r
ted

g

e
re

of

animal! this might also be the other way around. The fou
basic mode, atV52Ag/ l 12KA12KB, is the fastest one
with all four springs in action.

In real life these four basic modes are known as the pro
the bound, the pace, and the trot. The pronk@see Fig. 16~a!#
is a relatively rare gait, in which the animal propels itse

r

e

Fig. 15. The four basic modes of the four-pendulum model in Fig. 14,
their corresponding resonance tongues in the (a,V) plane. Also included are
the corresponding phase pictograms.

Fig. 16. The four basic gaits, corresponding to the basic modes of
four-pendulum model:~a! pronk, ~b! bound,~c! pace~or rack!, and~d! trot.
The pictures of the latter three are adapted from Ref. 19.
961J. P. van der Weele and E. J. Banning
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stiff-leggedly through the air. It is used by startled deer a
antelopes, by playful kittens, and occasionally also by
mas, especially around dusk. Whole groups of llamas h
been seen to pronk back and forth across a field, or i
circle, to play or to ward off predators.27

The second basic mode is called the bound, see Fig. 16~b!.
Aristotle ~in an early standard work on animal gaits, arou
350 B.C.! called this ‘‘a kind of stumbling forwards.’’ He
thought it would be hard to maintain, as indeed it is for larg
animals, but for a number of small mammals~like the ground
squirrel depicted here! the bound is in fact the usual fast ga

The third basic mode@Fig. 16~c!# goes by the name o
pace, or rack. Also considered unsatisfactory by Aristo
~since the weight must be shifted all the time, following t
side of support!, this is nevertheless the typical gait of cam
els. Other animals to which the pace comes naturally
canines~dogs, coyotes! and Icelandic horses. Most othe
horses have to be trained to do it, sometimes with a harn
around their legs.

The fourth basic mode is the trot@Fig. 16~d! #. This is the
gait we met before, which race horses are able to maintai
to admirable speeds. Sometimes, however, they ‘‘break in
gallop’’. The trot is also the gait by which dogs are judged
the show ring.

To find out how these pure modes interact, and how
quadruped can switch from the one to the other, we exp
again the symmetries~and, more specifically, the group the
oretical structure! of the system. This is a relatively new ide
in gait analysis21–26 and has already proved to be very fru
ful. In the present model there aretwo exchange symmetries
The exchange between left and right legs~A! and the ex-
change between front and hind legs~B!. The first symmetry
is fairly perfect in most animals, but the second one is
course only approximate~a head is not a tail, after all!. Then
there is the reflection symmetryR of the pendulums. The
average animal leg is admittedly less symmetric than a p
dulum, but some internal symmetry may nevertheless
present, and this is represented byR. And finally, of course,
we have the time-translation symmetryT.

Once one has identified the symmetries of the system,
not difficult to construct the symmetry hierarchy. This
done in Fig. 17. The most symmetrical gait of all is the
motion, corresponding to the full symmetry grou
Z2(A)ÃZ2(B)ÃZ2(R)ÃZ2(T), or AÃBÃRÃT for short.
This might be called the ‘‘hop.’’ The animal goes up an
down, but not forward, and for this reason it is not useful
locomotion. Impatient bulls before the start of a rodeo
something of the kind, but our interest lies not with the ho
We immediately go on to the four modes that can be deri
from it, i.e., the ones that correspond with the four resona
tongues in the (a,V) plane. These are of course just th
basic modes, which are described by the subgro
AÃBÃRT, AÃBTÃRT, ATÃBÃRT, and ATÃBTÃRT,
respectively. In the latter three the legs are pairwise in ph
and the two in-phase pairs move in exact counter-phase
each other, as exemplified also by the phase pictograms

As indicated in Fig. 17, every basic mode has 7 subgrou
3 of which ~the interaction modes! are shared with the othe
three basic modes. This adds up to a total of 22 modes in
third level of the lattice. Six of them are interaction mode
and these are the ones that we are interested in. At this p
it is good to note thatRT is present in all four basic modes
and hence does nothing to discriminate between them.
means that we do not really need theR symmetry~which is
962 Am. J. Phys., Vol. 69, No. 9, September 2001
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fortunate, since this symmetry is anything but perfect in r
animals! and the basic modes may just as well be descri
by AÃB, AÃBT, ATÃB, andATÃBT. This brings about a
welcome economy in the daughter modes: There are
cisely six of them~the interaction modesA, B, AB, ABT ,
AT , andBT, see also Ref. 28!, and that is all.

The most important interaction mode is the wa
(ATÃRT), the common daughter of the pace and the trot
this gait, the feet are placed in the order 1342 1342 1342
~see Fig. 14 for our numbering convention!. Figure 18~a!
shows a walking horse. Not any two legs are in phase a
more, but they are still pairwise in counter-phase. This is
primordial form of locomotion, presumably used by the fir
land animals~because of its stability: the center of mass
always within the triangle formed by the supporting leg!
and is still the prevailing gait at low speed.19 The popularity
of the walk may also have to do with the fact that it does n
involve the B symmetry, which~as we know! is far from
perfect in most animals. Crawling babies use this pattern
So, whereas from a theoretical point of view the ‘‘hop’’ is th
basic gait, from a practical and evolutionary standpoint
gait hierarchy starts with the walk.

Through the ages the animals have become faster, in
upward spiral of hunt and escape, and in the process h
brought into practice almost all the gaits in the symme
hierarchy.31 An accelerating horse will typically go from a
walk to a trot and finally into a gallop. This sequence, whi
was beautifully corroborated in 1981 by the results of Ho
and Taylor, in their landmark experiment with horses on
treadmill,29 can also be recognized in the symmetry hier

Fig. 17. The symmetry hierarchy of gaits corresponding to our fo
pendulum model. The different gaits are shown by their group-theore
structure, by their phase pictograms, and by a sketch of the animal~except at
the level of the interaction gaits, where one sketch is not sufficient anym
to characterize a gait, cf. Fig. 18!. The dashed lines indicate that the corr
sponding three interaction gaits are not observed in practice.
962J. P. van der Weele and E. J. Banning
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chy of Fig. 17. The walking horse goes into a trot by mea
of a symmetry-restoring bifurcation, and from there into
~transverse! gallop. The transverse gallop is characterized
the pattern 1423 1423 1423 etc. It is illustrated in Fig. 18~b!.

On the basis of the symmetry hierarchy it is even poss
to speculate about the next evolutionary step. The horse
the future, in pursuit of still higher speeds, may go up o
level again and learn to perform a bound~symmetry restor-
ing bifurcation!. They may also go down one level, toward
gait not depicted in Fig. 17~symmetry breaking bifurcation!.
Or, since this is also possible at the level of the gallop, th
may escape from the hierarchy by means of a Hopf bifur
tion. This third option is particularly intriguing, since
would result in a gait with another periodicity~i.e., not 2T!,
possibly even a quasiperiodic one.

In Fig. 19 we show a succession of gaits, based on
four-pendulum model, which contains all of the above ing
dients. We have chosen a path through the (a,V) plane that
passes reasonably close by the mode interaction points
responding to the walk and the transverse gallop. Follow
this path, starting from the 0 motion or ‘‘hop,’’ our pendulu
animal first goes into a pace~in a rather abrupt way! and
immediately afterwards switches to a walk. It duly exhib
the sequence

walk→trot→transverse gallop,

and becomes unstable before reaching the bound. Th
seems, at least along this particular path, that apart from
physiological problems with the bound there is also a bif
cational impediment.

Fig. 18. ~a! A walking horse,~b! a galloping horse~transverse gallop!, and
~c! a galloping cheetah~rotary gallop!, all from Ref. 19. Eight stages ar
needed to fully characterize these gaits, whereas four were sufficient fo
more symmetric gaits of Fig. 16. The numbers indicate in which order
legs are put on the ground. Walk: 1342. Transverse gallop: 1423. Ro
gallop: 1234.
963 Am. J. Phys., Vol. 69, No. 9, September 2001
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Note that the bifurcations walk–trot and trot–gallop a
hysteretic: When the animal is accelerating the~discontinu-
ous! switch from trot to gallop occurs at a higher speed th
the switch from gallop to trot when it slows down. This
precisely as in real horses.29 It is also worth noting that the
animal does not have to think about its steps; everything
determined by the particular arrangement of the four osci
tors. The nervous system just has to intensify its signals@that
is, to increasea in order to follow the proper path throug
the (a,V) plane# and the sequence comes about autom
cally.

Figure 19 depicts just one possible path through the (a,V)
plane that contains the walk–trot–gallop sequence, and
do not claim that this one is better or more realistic than a
other. But it does show the point we want to make, nam
that the interaction~i.e., connection! between the modes i
always established via common daughter modes in the s
metry hierarchy. In other words, the ‘‘general rule’’ found
the previous sections is also valid in the present contex
also shows, as noted before, that it is in the bifurcation d

he
e
ry

Fig. 19. Bifurcation diagram for our model quadruped, together with
associated path through the (a,V) plane. The succession of stable ga
contains the sequence walk–trot–gallop observed in real horses. Not
hysteresis at the various transitions~hop–pace, walk–trot, trot–gallop!. For
ease of survey, the 0 motion~hop! and the pure modes~direct branches from
the 0 motion! have been denoted in capitals, and the interaction mode
lower-case letters.
963J. P. van der Weele and E. J. Banning
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gram with its bent curves and its cross branches~not in the
symmetry lattice! that the nonlinear nature of the syste
becomes manifest.

One last remark: Apart from the walk and the transve
gallop, the only other interaction mode of practical impo
tance is the rotary~or lateral! gallop. It derives it name from
the fact that the feet are placed in the ‘‘rotational’’ order 12
1234 1234 etc. Being the transition mode between the p
~a relatively slow gait! and the very swift bound, it is espe
cially suited for those quadrupeds that want to accelerat
one stroke over a large speed interval. The cheetah@see Fig.
18~c!# is a prominent user of this type of gallop.19 The re-
maining three interaction modes in Fig. 17, which conn
the pronk to the other pure modes, do not seem to be fav
by any known animal~that is why the corresponding line
are dashed! and the current language has no names for th
A reason for this unpopularity may be that the pronk is
one-beat gait whereas the bound, pace and trot are two-
gaits: apparently the two kinds do not mix very well.

V. CONCLUDING REMARKS

Let us briefly recapitulate the three main points. The fi
one is that mode interaction in a nonlinear system is qui
different affair than a simple superposition of two mode
The interaction modes exist in their own right, separa
from their parents by a bifurcation, and with a lesser deg
of symmetry. We have seen that mode interaction takes p
not between just any two modes, but only between those
are linked in the symmetry hierarchy by a common daugh
This appears to be universally true and may well be ca
the quintessence of nonlinear mode interaction.

All the systems in the present paper were parametric
driven, and one might wonder if they are really represen
tive ~as far as the mode interaction is concerned! for systems
of nonlinear oscillators in general. The answer seems to
yes. Of course, in this more general context, the symm
hierarchy is not restricted to 2T-periodic oscillations inter-
connected by bifurcations that preserve the period.32 One
also has to be prepared for types of bifurcation that alter
periodicity of the motions, and the hierarchy must be e
tended to encompass a multitude of periodicities. The m
tions with different periodicities can be accommodated
separate layers within the hierarchy, and these layers ar
terconnected~at certain points! via period doublings or Hopf
bifurcations. This extended symmetry hierarchy is a
known by its mathematical name as the ‘‘complete isotro
lattice.’’ Within this lattice, the interaction again takes pla
via common daughter modes, and that is how the gen
rule should be interpreted.

The second point is that the form, location, and stability
the interaction mode depend sensitively on the nonlin
terms in the system’s equations of motion. This expla
why, in spite of the above unifying principle, the actual a
pearance of mode interaction can vary hugely from system
system, and even within one single system. For instance,
changes in the nonlinearity of the torsion spring in our tw
pendulum model have a marked effect on the width of
interaction region and on the~order of! bifurcations inside
this region.16 Another striking example is provided by th
parametrically driven compound pendulum of Skeldon a
Mullin,13,33which has exactly the sameZ23Z23Z2 isotropy
lattice as the two-pendulum system, but quite a different
pearance in the (a,V) plane. Indeed, in cases where a ge
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eral understanding is not enough and information is requ
for a specific system, with specific values of the control p
rameters, one has to face the full equations of motion.

The third point is that mode interaction is all around u
Apart from the examples we have mentioned so far, mo
interaction is found in the solidification of liquid crystals,34

in the transverse ‘‘sloshing’’ waves in a canal,35 in the tearing
instabilities in a tokamak plasma,36 in the chaotic signal of
the pulsating star R Scuti,37 and in many, many other sys
tems. Indeed, as stated in the introduction, the world is
of coupled nonlinear oscillators and, hence, mode inter
tion.
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