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This paper is about mode interaction in systems of coupled nonlinear oscillators. The main ideas are
demonstrated by means of a model consisting of two coupled, parametrically driven pendulums. On
the basis of this we also discuss mode interaction in the Faraday expefiazenbserved by
Ciliberto and Gollub and in running animals. In all these systems the interaction between two
modes is seen to take place via a third mode: This interaction mode is a common daughter, born by
means of a symmetry breaking bifurcation, of the two interacting modes. Thus, not just any two
modes can interact with each other, but only those that are liilkete system’s group-theoretical
hierarchy by a common daughter mode. This is the quintessence of mode interaction. In many cases
of interest, the interaction mode is seen to undergo further bifurcations, and this can eventually lead
to chaos. These stages correspond to lower and lower levels of symmetry, and the constraints
imposed by group theory become less and less restrictive. Indeed, the precise sequence of events
during these later stages is determined not so much by group-theoretical stipulations as by the
accidental values of the nonlinear terms in the equations of motion200® American Association of
Physics Teachers.
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[. INTRODUCTION Everyone who has ever put a cup of tea on a washing
. : : machine(vibrating, say, with a vertical amplitudeand fre-
The world is full of coupled oscillators. One may think forequencyf) has performed the celebrated Faraday experiment,

instance of atoms in a crystal, vibrating around their lattic : , :
positions; or giant swarms of male fireflies flashing in perfectd"?mng back as far as 183With a little luck one may have .
unison to attract females;or even our own heart—lung witnessed the formation of stable wave patterns on the fluid

systen? The physics of such systems is incredibly rich, andsurface, and that is precisely the gist of the experime_nt. Two
it is no wonder that they are the subject of much researc examples of su_ch patterns, or modes, are s'kchhed in Fig. 1.
One of the problems of interest isode interactioni.e., the he modes oscillate #talf the washing machine’s frequency

interaction between two or more basic modes of the systen{sf) and are excited parametrically, in much the same way
During the last decade much insight has been gained into th&s the resonant oscillation of a parametric pendulum.
way this interaction takes place, and that is what this paper is The parametric pendulum, depicted in Figa)2is a pen-

about. dulum that is being moved up and down at its point of
If the oscillators(and the coupling between thémappen  suspensiof=® If the motion of this point is given by(t)
to be linear, everything is very simple: Therenis interac- = —a cos(t, the equation of motion takes the form:

tion between the modes, because there are no mode-mixing
terms in the Hamiltonian when written in terms of the nor- 1
mallmodes. Any motion in the system i; just a linear super- g4 71'9+ Z(g+a0?cosQt)sin9=0. 1)
position of the normal modes. If the oscillators are nonlinear, I
however, the problem is much more complicated. In that
case, the standard way to proceed is a frontal attack of the . . - Lo
equations of motion. This gives detailed information about g?h's is the usual pendulum eguat|oih,+(gll)smﬁ—0, plus
particular system, but if one is interested in the general fead few extra terms. The termd represents the unavoidable
tures of mode interaction, valid for all systems, a more condissipation in the systertiere taken to be a viscous damping
ceptual viewpoint is required. The essence of the interactiorin the point of suspensionand the driving is seen to mani-
as we shall see, lies in tlymmetryof the modes, and is best fest itself as a modulation of the gravitational acceleragon
formulated in the language of group theory. This will be The downward equilibrium motion, or 0 motion, in which
done in Sec. lll. the pendulum simply goes up and down with the point of
Before we come to that, we firgin the present sectipn suspension, corresponds to a flat surface in the cup of tea; it
want to say something about the phenomenology of modés usually stable butot for combinations ofx and () within
interaction, and in Sec. Il we present a model system, corthe tongue-shaped regions in FigbR (This is the well-
sisting of only two pendulums and a spring. The group theknown stability diagram of the damped Mathieu equafiem,
oretical argument is given in Sec. Ill. In Sec. IV the validity which Eq.(1) reduces if one sets sih= 19, as usual for small
of the argument is tested on a lively, seemingly far-fetcheerturbations from the downward equilibritinWithin these
system(a galloping horseand finally, in Sec. V, we make regions, small deviations from the 0 motion do not die out
some concluding remarks. but are excited into an oscillatory motion. The main reso-
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Fig. 1. Two surface patterns of the vibrating cup of t&ree Faraday experi-
men). Each pattern is characterized by two numbers, related to the number
of maxima in the angular and radial directions, respectively.

nance occurs arounf =2.g/l, i.e., at twice the natural
frequency of the pendulum. As a consequence, the most im- NS yd
portant oscillations of the parametric pendul(on of the tea 3 oL
surface all have period Z, whereT is the periodicity of the (b) p

driving. Higher-order resonances are centered around the

values Q= (2/n)\g/l, with n=2,3,4,..., but these are of amplitude T

much lesser importance. of oscillation position along path
So let us have a closer look at the main tongue. That is, let in (0,{1) diagram
us follow a path through it as indicated in FigaB adjusting ___)- -

the control parameteigsand() in tiny steps, each time wait-
ing until the pendulum has settled in its new steady motion.
(c)

Fig. 3. (&) The path through the resonance tongin,the « and B oscilla-
I —acost tions, and(c) the corresponding bifurcation diagrdire., amplitude of the
various oscillatory motions vs position along the patitar]. The distinction
] between ther and B oscillations lies in their different phases with respect to
| the driving: The former reaches its amplitude shortly before the driving goes
! through itslowestposition while the latter reaches its amplitude shortly after
: the driving goes through itsighestposition.
|

First we follow the path in theounterclockwisalirection,

(a) i.e., from right to left. Outside the tongue the pendulum
settles in the 0 motion, which is stable there, but as soon as
we cross linea it undergoes a period doubling bifurcatfon
and starts to perform the so-calledoscillation[sketched in
Fig. 3(b)] with twice the driving period. Continuing our path
through the &,()) plane we find that, at ling, the 0 motion
becomes stable again; this is the result of a second period
doubling bifurcation, in which the unstabJ@ oscillation of
Fig. 3(b) is born. Now the pendulum has two stable motions
to choose from(a and Q. If the experiment is performed
gently enough, however, it will stay in theoscillation. Fol-
lowing the path further, ther and 8 oscillations are seen to
grow toward each other. At the dash-dotted line they meet
and annihilate each othé reverse saddle-node bifurcatipn
and after that the pendulum has no other choice than to fall
back to the 0 motion. The corresponding bifurcation diagram
is given in Fig. 3c). The bent curves are a clear reminder of
the nonlinearity of the system: In a linear model—where the

0 frequency of an oscillator, or a mode, does not depend on the

F amplitude—the linesx and B would go straight upwards,

V% without ever meeting each other.

Fig. 2. (a) The parametric pendulum arb) its stability diagram; the down- If we tur.n In our .traCkS an.d pursue_the path in Figa)3n

ward equilibrium is unstable for driving parameteasand () within the the_doc!(W'Sed'reCtlon'_We witness a fine exar_nple of hyster-

tongue-shaped regions. The dashed contours indicate the position of SIS, With a sudden jump from the 0 motion to a well-

regions of instability in the absence of dissipation. developedwx oscillation upon crossing ling.

0
(b)
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Fig. 5. A mechanical model to demonstrate mode interaction, consisting of
two parametrically driven pendulums coupled by a torsion spring.

fold and the sevenfold components in the pattern; the signal
oscillates with a periodicity of approximately 15 s, with
P(4) trailing one-quarter of a period behif{7). The mo-
tion is said to be quasiperiodic, since its period is incommen-
surate with the driving periotD.062 3. This is typical limit-
cycle behavior and it means that the system has apparently
gone through a Hopf bifurcatichNow, proceeding from the
situation of Fig. 4b), and carefully following the path indi-
cated in Fig. 4a), Ciliberto and Gollub found that the signal

Y 20 40 60 go 100 undergoes a period doubling bifurcatiGafter which its pe-
(b) —> time in s riod is about 30 5 and a second ongringing the period to

60 9, and soon thereafter becomes chadtichus, in this

concentrate on the interaction between (4e8) and (7,2) modes, but the C.ase’ mOd.e cqmpeuuon leads to Chaos’. and that is exaCtly the
diagram shows that similar interactions also occur between other pairs Jﬂtle Qf their original paper. Evemua”yj 'flone prqceeds fur-
modes.(b) The slowly varying heights of the peaks in the angular power ther into the (4,3) tongue, the chaotic interaction breaks
spectrum associated with the sevenfold and the fourfold symmetries in thdown and the fluid surface then “falls back” onto the pure

surface pattern, denoted B$7) andP(4), after Ref. 9. The driving param-  (4,3) pattern. So the entire sequence is:

eters are=99 um andQ)=2xf=101.3 rad/s, marked by the small cross in L . .

4(a). If one follows the path indicated by the arrow, the signal undergoes a  (7,2)—limit cycle—period doublings-chaos-(4,3).
series of period doubling bifurcations, becomes chaotic, and eventually falls
back upon the4,3) mode.

Fig. 4. (a) The (a,Q)) diagram of the Faraday experimeafter Ref. 9. We

This is all very beautiful, but also quite puzzling. First,
why does the mode interaction take place within the territory
of (7,2 and not, as might be expected, in the region where

. . the two tongues overlap? Second, on a more technical level,
The surface patterns in the Faraday experiment are creat«-ﬁ%w can a pure mode such &2 undergo a Hopf bifurca-

by the same kind of resonante?? When Ciliberto and . o s -
Gollub® performed the experiment in 1984 under preciset|on to a limit cycle? The answer to the latter question is that

e . . it cannot'>* That is, there must be an intermediate stage
laboratory conditiongwith pure water instead of tea, and between thé7,2) mode and the limit-cycle interactiofiThe
using the cone of a loudspeaker instead of a washing ma; '

chine they found a whole series of tongues, every one o ater stages of the sequence, including the period doubling

them corresponding to a different mode. In Figa)4a small foute to chaos, are all in good ordler

. . . To clarify these points it is not very convenient to stay
portion of the @,0) plane is reproducetshowing the with the cup of tea with its innumerable degrees of freedom

@nd its notoriously hard-to-tackle Navier—Stokes equations
(see, however, Refs. 10—-1ZRather, we construct our own

. o : ; . ¥hodel, with just two degrees of freeddithe minimum num-
Interact giving rise to a wave pattern which contains char-per requiredl and relatively simple equations of motion. Af-
acteristics of both the fourfold and the sevenfold moaith- o1 51 ‘it is not the tea we are interested in, but the general
out, however, being a simple superposition of the two, sinCeLanomenon of mode interaction.

the superposition principle does not hold in a nonlinear sys-

tem).

Figure 4b), corresponding to the choice of parameters in-”‘ THE TWO-PENDULUM MODEL
dicated by the small cross in Fig(a4, gives an impression of  The mechanical system depicted in Fig. 5 is arguablg/ the
the interaction. The two curves represent the intensRigs)  simplest model for studying nonlinear mode interactivr!
and P(7), obtained by spatial Fourier analysis, of the four- Indeed, it was especially devised for this purptst.con-
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Fig. 6. The stability diagram for the 0 motion of the two-pendulum model. /
The 0 motion is unstable for driving parametarand() within the tongue-
shaped regions, and at the boundaries of these regions it giveq\bath
period doubling bifurcationto the various oscillatory modes depicted. (b)

oscillation g 2p -
amplitude -7 position along

path in (a,2) plane

sists of two identical pendulums coupled by a torsion spring,
and is driven(parametrically by the periodic up-and-down
motion of the bar of suspension. The equations of motion
are, including dissipatiof?

|
d1+ v+ 7 (g+a0? cosQy)sin gy + (D, 92) =0,

2)
. .1 (
o+ v+ 7 (g+a0? cosQy)sind,— (1, 92) = 0.

Fig. 7. (a) The path through the double resonance ton@ujthe hypotheti-

. . . . cal (wrong!) bifurcation diagram obtained from applying the single-
Here f(ﬁl’fb) is a function representing the coupllng be- pendulum diagram twice, an@) the true bifurcation diagram. The mode

tween the two pendulums. We take it to be slightly nonlinealinteraction is established by the cross brangénoted by M connecting

(which is the most natural choice and, as it happens, alsa and 28. The circular loops arountthe unstable part dthe MP branch
quite essential for our purpose'$ represent a quasiperiodic oscillation, which undergoes a period-doubling

3 bifurcation and eventually becomes chaotic.
f(91,02) =K(F1—F2) +L(F1—92)°, ©)

with L considerably smaller thaK, sayK=1.0s 2 and L

=0.1s% The length of the pendulun{®) is chosen to be 1 the bifurcation diagrainand then, when we cross linex2it
m. In the present paper we consider only the dissipative casgecomes unstable with respect to perturbations in the
(with y~0.1s%) to make the link with practical applications counter-phase direction while still retaining its stability in the
such as the cup of tea as direct as possible. For the conséi-phase direction(this semi-stability is indicated by a
vative case ¢=0), which is also very worthwhile, we refer dashed ling Upon crossing &, it loses its stability in the
to Refs. 13-16. in-phase direction as well, so here it becomes fully unstable
The system has two basic oscillatory modes: one in whickindicated by a dotted line The stability in the counter-
the pendulums swing in phase with each other and anothgrhase direction is regained aB Zthe line becomes dashed
one in which the pendulums move in counter-phase. The firstnce morg¢ and the stability in the in-phase direction a8 1
one is very similar to the one-pendulum oscillation discussedwhere the line becomes so)id
in the previous section. In particular, it has the same eigen- Now, one might be tempted to guess that the whole bifur-
frequency, since thdunstretchepl spring does nothing to cation diagram is just twice the old one-pendulum structure.
speed up or slow down the oscillation. The second mode hd$ that were true, one would get the bifurcation diagram of
a somewhat higher eigenfrequency, because the motion Kg. 7(b). However, this diagram contains two bifurcational
sped up by the torsion spring. Accordingly, each of the resoimpossibilities® the 1o branch, at the point where it bifur-
nance tongues of the system is split into two as shown in Figcates from the 0 motion, should be semi-stallesheg and
6. In the same figure we have sketched the varie@d  the 28 branch fully unstablédotted. In the real bifurcation
oscillations which bifurcate from the 0 motion at the bordersdiagram[Fig. 7(c)] these shortcomings are cured by the cross
of the main double tongue. branch denoted as MBMP stands for mixed phase, because
As before, we follow a path through this double tonguein this mode the pendulums swing neither in phase nor in
[see Fig. 7a)], slowly changing the parameteasand(), and  counter-phase; see Sec.)lIMery conveniently, and in the
we choose to go in the counterclockwise direction. We al-same stroke, this cross branch establishes a link between the
ready know how the stability of the O motion changes alongle and 28 modes, i.e., anode interaction With its Hopf
this journey. First it is stabléas indicated by a solid line in bifurcation and subsequent period doublings, which lead to
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Fig. 8. The simplest scenario for mode interaction in the two-pendulum
system, consisting of an unadorned cross branch. This is the scenario tha
occurs if the torsion spring between the two pendulums is chosen to be a
soft one, i.e., ifL<0 in Eq.(3).

chaos, this interaction is obviously of the same type as that olias 200
observed by Ciliberto and Gollub in the Faraday experiment. )
It is intrinsically nonlinear: The cross branglet alone the
transition to chagswould not be present in a linear model. \ \
i

The interaction scenario depicted in Figc)Zis not the
only one conceivable. Equally possible is the interaction de- 9

picted in Fig. 8, consisting of an unadorned cross branch, \\\\KZ \N Bias 13
without any extra bifurcations, and no transition to chaos. In \\\w
an experimental situation, this interaction would go by unno- T
ticed, since the cross branch is unstable along its entire
length.' . . . . . Fig. 9. (8 The bifurcation diagram, and the corresponding “experimental”
W_h|Ch Scena_no turns _UD In practlc_e 1S determ_med by thesequence of events in the,(}) plane, which one gets if one follows the
nonlinear coupling term in the equations of motfGrif the path indicatedaround the intersection point of the tongyestarting from
coupling is soft[i.e., if the coefficientL in Eq. (3) is nega- the 1x mode.(b) The same for the Faraday experiméstarting from the
tive] we get the simple scenario of Fig. 8, but a usual torsior(7,2 mode, alias 2]. In order to facilitate the comparison with the two-
spring is hard (6L <K) and then we get the more infrest- PeTdum model e navendcaied i i of he pendulum motons e
ing scenario of Fig. (). . T.he po'f’.t at which the bifurcation the domain of mode interactidincluding the regime of chaotic interaction,
from la to MP_(_)CCUt’S 1S msen_smv_e to the value b_f be_' cf. Fig. 4@]. In the bifurcation diagrams, the circular loops arouttie
cause the stability of thealmotion (in which the spring iS  unstable part ofthe MP branch correspond to a quasiperiodic interaction
not wound upis not affected by the nonlinear coupling term. mode, which undergoes a period-doubling bifurcation and eventually be-
The bifurcation from the 2 branch, on the other hand, is comes chaoti¢cf. Fig. 7(c)].
extremely sensitive to the value &f For increasing- the
bifurcation point sweeps toward the right of the bifurcation

diagram, and it is this circumstance that brings about theyg) it has been represented by a circular loop. This limit
shift from one interaction scenario to the other. cycle subsequently undergoes a series of period doubling bi-

Let us return to the path we were following through the frcations and ends up as a chaotic attractor. When this at-
(a,Q2) plane, around the intersection point of the tonguesyactor eventually loses its stability, the pendulums fall back
[see Fig. 7a)], bearing in mind that fot =0.1 K we have to  to the first attracting motion that presents itself, which hap-
do with the scenario of Fig.(€). Now, what would we see of pens to be the 2motion. So what we see in our experiment
the interaction in an experimental situation, when only theis the following sequence:
stable motions count? The answer depends strongly o
whether one goes in the clockwise or the counterclockwis
direction. This is summed up in Fig.(8), where the shading represents

The counterclockwisedirection is rather uneventful: We [as in Fig. 4a)] the interaction region, including the chaotic
first meet the stable 2 motion and(since we change the regime. Note that the problem of the missing link between
driving parameters very slowly, avoiding any unnecessaryhe pure mode and the limit cycle has been resolved: It is the
jumps we staywith it along the whole length of the path. It MP mode. Actually, it isthis mode that is at the heart of the
simply does not become unstable. whole interaction, and we will come back to it in Sec. Ill.

In the clockwisedirection, things are much more entertain-  If we translate the above results to the Faraday experi-
ing [see Fig. 9a)]. Starting with the stabled motion we first  ment, we get the diagram of Fig(l¥, which is clearly very
witness, at the line denoted by MP, a symmetry breakingimilar to Fig. 9a). There is only one difference worth men-
bifurcation to a stable MP mode. This MP mode subsetioning, namely the orientation of the two pictures. Whereas
quently becomes unstable by means of a Hopf bifurcationin the two-pendulum system the pure modes are born toward
which introduces an additional periodicity into the motion. Inthe left, in the Faraday experiment they are born toward the
general, this periodicity is not a rational multiple of the pe-right. This is because the pendulum modes happen &bfie
riod already present (B), and the newly born motion will be ones, which means that their amplitudes grow in the direc-
quasi-periodic In (stroboscopig phase space such a motion tion of decreasing(,'® whereas the corresponding fluid
takes the form of a limit cycf@!® and that is why in Fig. modes ardard, and grow in the opposite directidh?As a

(b) (7,2) alias 1%

a— MP—limit cycle—period doublings-chaos-2a.
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result, the complete bifurcation diagram, including the mode 9
interaction (and the path one has to follow around the

tongues’ intersection poipthas its direction reversed. That l 0
is why Ciliberto and Gollub had to go in th@unterclock-
wise direction. In the clockwise direction they would have
witnessed an abrupt transition fra@h,3) to (7,2) without any

intermediate mode interaction.

In closing the present section, we note that the question . ,
why the interaction regiori.e., the shaded region in the KX fx
(a,Q) plang does not coincide with the overlap region of . '

the tongues, has vanished into thin air. The overlap region is
determined by the bifurcations of two pure modé& and

2B) from the 0 motion, whereas the interaction region is \ /
E R

RxEx T °

E xRT ET XxRT

associated with the bifurcation of the MP motion from these

pure modes. Only at the intersection poimnthere all these
bifurcations happen to occur simultaneousy the overlap

region and the interaction region necessarily coincide. ERT

. SYMMETRY CONSIDERATIONS: THE NATURE / / .n
OF THE INTERACTION MODE Hopf pd
A. The two-pendulum system
We have now come to the central section of the paper, in
which it will be shown how the essence of mode interaction ]1

T ET ER
S Y \
Hopf / Hops pd
can be captured in terms of symmetry. We will do so both for

the Faraday experiment and for the two-pendulum modef |l TE8 SHmnd) o o e o ovel contains th basic
and we start with the latter, because it is the S|mpler of thtﬁmdes. At the third leve(which, among others, contains the interaction

two. . . . . mode MB it becomes possible to break away from thE Reriodicity, via
For our purposes, it is sufficient to consider the following ejther a period doublingpd) or a Hopf bifurcation.

three symmetriesin particular, we do not need to take into

account the rotational symmetry of the pendulums

1. Reflection (R) periodic motions of period B (and identify t=0 with t
This symmetry represents the fact that it does not make-2T); in the present context this can hardly be called a re-
any difference for a(single pendulum whether it swings striction since all the oscillations taking part in the mode
towr_:lrd the right or to the Ief_t. The corr(_espondmg ”ans_for'interaction have period® The three operatiorR, E, andT
mation that leaves the equations of motion unchanged is: may be applied to the systefie., the equations of motion
R independently of each other, and in any desired order, so we
(91,901,895, 9, 0) = (=01, — 1, — 9y, —Ip,t). (4  arive at the symmetry group,(R) X Z,(E) X Z,(T).
The only motion that is invariant under all three operations
is the 0 motion, and to a group theorist this motion must
2. Exchange (E) certainly be the most perfgct apnd beautiful of &The 0
This symmetry represents the fact that the two pendulumgotion is even more symmetrical than suggested here, since
are identical and that it does not matter which one is called Jye deliberately regard it as having periodicity 2while it

and which is called 2. The corresponding transformation isyctyally repeats itself after every driving periddthe pen-

simply an exchange of the indices: dulums simply go up and down with the bar of suspension
£ The other motions are all less symmetrical. For instance, the
(O, 01,000, 0)— (3, O, O1,01,1). (5)  laoscillation is invariant under the exchange transformation

E and thecombinedoperationRT, but not underR or T

independently. It thus has symmetry groug,(E)

X Z,(RT), which is a subgroup of the origind, X Z,x Z,
The driving is periodic, so the equations of motion areqroup!8 Likewise, each oscillation of periodT2falls in one

unaltered by a time translation over one driving peribd or the other subgroup, which together form the so-called

3. Time translation (T)

=2x/{). The corresponding transformation is: isotropy lattice depicted in Fig. 10. The perfect symmetry of
T the 0 motion(at the top of the hierarchycan be broken step
(1,01, 09, )— (91,37, 09, 9.t +T). 6) by step, by means of symmetry breaking bifurcations, until

one reaches the bottom of the lattice. The oscillations at this
The symmetry operatiorR andE are their own inverse, i.e., lowest level have none of the above symmetries anymore.
applying them twice yields the identityt). So in both cases, The first step brings the 0 motion to one of the “pure”
the operation plus the identit){R,1} and {E,1}, respec- modes: that is, either t@,(RT)XZ,(E), corresponding to
tively) comprise a cyclic group consisting of two elements, 1« and 18, or to Z,(RT) X Z,(ET), corresponding to2and
commonly denoted a22.18 The third symmetry operation 2. (Of course, ther and 8 versions of the modes belong to
(T) also generates @, group if we restrict ourselves to the same symmetry class, otherwise they would never be

958 Am. J. Phys., Vol. 69, No. 9, September 2001 J. P. van der Weele and E. J. Banning 958



represent the phase relations between the pendulums is by
means of so-called phase pictograms, i.e., the little “clocks”
in Fig. 11. The arm of each clock makes one revolution per
2T seconds. In the d mode the arms move in phase with
each other, in the2mode they move in exact counter-phase,
and in the MP motion they have some intermediate phase
difference.

It is tempting to interpret the MP motion as a superposi-
tion of 1a and 28, but this is in fact a misrepresentation for
at least three reasons. First, the superposition principle does
not hold in a nonlinear system. Second, it would suggest that
the MP motion can be stable only whéwoth) its parents are
stable, but this is in plain contradiction with the facts. Third,
the MP motion is separated by a bifurcation from its parents,
so it really is a mode in its own right. In this context it is
perhaps good to note that the nonlinear nature of the inter-
action, which shows up so clearly in the bifurcation diagram,
is of no concern to the symmetry lattice. The lattice does not
discriminate between linear and nonlinear systems, as long
as they have the same overall symmetry. But the fact is that
a nonlinear system makes much more creative use of the
MP (”"Mixed Phase") possibilities offered by the latticgIn particular, if the sys-
tem were linear theRT subgroup would indeed stand for

Fig. 11. The main actors in the mode interactita:the 1o motion, (b) the ~ nothing more than a simple superpositiot an interaction
23 motion, and(c) their common daughter, the MP motion. Also shown are of the two pure modek.

the corresponding phase pictograms, i.e., the “clocks” that indicate the

phase difference between the two pendulums.

B. Faraday’s cup of tea

- . How does all this work out for the cup of tea? Well, to

able to annihilate each otherThese pure modes are still 1oy \yith “the symmetry structure of the Faraday experi-
quite symmetrlca!. Too symmetrlcal In fac; o admit any €S‘ment differs somewhat from that of the two-pendulum model
cape from the latticéto motions beyond periodD) by either  yhich is rather fortunate, since it makes it easier to see

a period doubling or a Hopf bifurcatiofi:They haveto un- \yic parts of our discussion are generally valid and which
dergo a symmetry breaking bifurcation, bringing us to the

. 4 . : : ; are noj. The time-translation symmetiZ,(T) is the same,
t_hwd level in the-latt.|ce. It is at this level that Hopf bifurca- but the spatial symmetrie&,(R)x Z,(E) are replaced by
tions[for the oscillations wittZ,(ET), Z,(RT) or Z(RET) 0O(2), theorthogonal group in two dimensions, which says
symmetry} or period doublinggfor those withZ,(RE) or ! g group ' y

d th ted h that the(circulan surface of the fluid is invariant under all
Z,(E) symmetry and the associated routes to chaos canniinyous rotations around the center, and all mirror reflec-

. 3_ 6 . .
come into play*~*® It is also at this level that the mode tions in axes that pass through the cefidie subgroups of
interaction t_akes place: The pure m.oqles have a COMMOB, 5)x 7,(T) that correspond to théh,3) and (7,2 modes
daughter, withZ,(RT) symmetry, and it is througherthat  5ye heen sorted out by Crawford, Knobloch, and Ricke
they interact. and turn out to beD(M,(27/8)T) and D(M,(2m/14)T).

Mode interaction is conceivable between any two pure,, : .
L > ereD(M,(2#/k)T) is a dihedral group generated by,
modes in Fig. 10as, in fact, between any two modes thatwhich is a mirror reflection in a properly chosen axis, and

share a daughter in the hierarghyut only the interaction . .
between the & and 28 modes has actually been observed.lN® €lement (Z/K)T, which represents a rotation over

This has to do with the fact that this pair is “anchore® 277/_k rad combined with time translation over one driving

the 0 motion at the intersection point of the two tongues, Period. The symmetry of the pure modes does not allow

which serves as a nucleation point for the mode interactionfhem to undergo a Hopf b_|furcat|3_ﬁ1 so there can be no

The other pairs lack such a nucleation point. In more techniguestion of a time-varying interactigas in Fig. 4b)] before

cal terms, it is called a critical point of codimension 2, mean-they have undergone a symmetry breaking, bringing us to the

ing that two linear instabilities occur simultaneously. Indeedthird level of the isotropy lattice in Fig. 12. Here we see

the connection between the existence of such a point and tf@Mmething new: The mode#,3) and (7,2) havetwo com-

appearance of mode interaction is so direct that som&0n daughters and can interact via any one of them. The

authord? simply identify the two, calling any point of this daughters are fairly alike; their symmetry groups indicate

kind a “mode interaction point.” that the “properly phosen" axis of ref!ecnon remains fixed in
In Fig. 11, which is an enlargement of the crucial part ofboth cases, |mp_ly|ng that the associated wave patterns have

the symmetry lattice, we have drawn the and 28 modes O a2|mgthal drift. Both modes can undergo a ngf b|furca—

together with their common daughter. The latter has bee#ion (which preserves th&, symmetry and thus give birth

given a name already in Fig(cJ, namely MP, which stands to the more complicated interaction form of Figbu®2The

for mixed phase; this is because it possesses netheor ~ only difference between them is that ofig,(M)] is invari-

RE symmetry, i.e., the pendulums swing neither in phase noant under mirror reflection, and the other diis,(MT)] is

in counter-phase but in a kind afixedphase. A good way to invariant under theombinedoperation of mirror reflection
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D(M, 5 T) D(m,ZT) IV. ANIMAL GAITS
~ < 1

\ - /’ The legs of animals are among the finest coupled oscilla-
~ tors to be found in nature, and the oscillation pattefms
Z,(M) Z,(MT) “gaits” ) used in locomotion are singularly fascinatittg®®
J / It does not matter whether the animal has two lemgtrich,
Hopf y Hopf four (horse, six (anb, eight (spide) or more (centipedg

or pd ’ each has its own charm. Also the more unusual cases with an

1 odd number of legs are very interesting; in Ref. 22 a three-

legged dog is discussed, and in Ref. 25 a man with a walking
Eig- (112- The symmetry hierarchy for tit¢,3—(7,2 mode interactionin the  stick. Fortunately for usN-legged locomotion can be de-
o et nenc g o pea . ScHbed auite adequately 1 paramerically driven pendu
tions. lums. For instance, two-legged locomoti@hone is willing

to disregard the effects of arms, tails, gtis. described by
our two-pendulum model: Humans normallyeua 2 mode,
whereas a jumping kangaroo ss& 1 mode.

Things get more interesting with four legs. The paragon of

try, but theydid mention that the interaction patterns had noquadrupeds IS undo_ubtedly the.horse, which is able to per-
azimuthal drift. form an amazing variety of gaits: walk, trot, gallop, canter, to

What is more surprising, at least at first sight, is that they?@me just a few. Modern gait analysis began with the trot.
observed neither of the two daughters attiie third level of  The story goe¥ that in the 1870s two rich Americans, Stan-
the lattice in Fig. 12 whereas thesshouldhave come be- ford and McCrellish, had a befor no less than $25,000
tween the(7,2 mode and the quasi-periodic interaction of over the placement of the feet of a trotting horse. Stanford
Fig. 4(b). One explanation may be that the associated zone iasserted that there were moments when the horse had all of
the (@,{2) plane is quite narrow, which means that the inter-its feet off the ground, and McCrellish disputed this. Now, it
action mode in this zone is still almost indistinguishableis virtually impossible to settle this question with the naked
from the (7,2 mode (even more so because they have theeye so they called in the help of a photographer named
same periodicity ). The explanation may also be sought in pyuypridge, who invented the “zoopraxiscopéd series of
slight imperfections in the symmetry of the experimentalinierconnected cameram produce the first movie of a trot-

setup. These would cause an unfolding of the symmetr)(ing horse. Figure 13 shows four pictures from this movie,

breaking bifurcation, turning the transition from the pure = ;
mode to the interaction mode into a gradual one. In that cas\élrcl'é?JgEggrStandably_de“ghted Stanford - more  than

it becomes meaningless to distinguish between the two: The
would belong to the same symmetry class, and would form Our model of a horse, or more generally of any four-
an uninterrupted branch in the bifurcation diagram. If thelegged animal, is shown in Fig. 14. It is a natural extension
symmetries are intact, however, th&-periodic interaction Of our two-pendulum model, consisting of four pendulums
zone(however smajl must be there. coupled by various springs. Experienced gait analysts will
In any case, the general rule for nonlinear mode interacnotice that it is closely related to the “type 2" quadruped of
tion is that two modes interact via a common daughter modeRefs. 22 and 23. The major difference is that we have added
It is this rule that makes the mode interaction in the two-an explicit, parametric drivingThe authors of Refs. 22 and
pendulum systerfFig. Ya)] so similar to that in the Faraday 23 did not use pendulums but limit-cycle oscillators of the
experimen{Fig. Ab)]. Thus, as anticipated in the introduc- \an der Pol type, which means that the periodicity in their
tion, the results of Ciliberto and Gollub can be understoodsystem was introduced by means of a Hopf bifurcatidine
(and even supplementedy means of the two-pendulum driving represents the signal from the br&im perhaps some

model. .
We could stop here, but that would be a pity. Until now Weother part of the nervous systgiinat tells the animal to run

have been talking about only two systems, but the “generaft"d: Since it is parametric, the principal gaits it produces will

rule” formulated above would hardly deserve that name if ithave twice the driving period. The model is something of a

would not apply to a multitude of other systems too. Let uscaricature, to be sure, but the results turn out to be remark-
therefore discuss an example of mode interaction that comeably realistic.

from an entirely different field: animal gaits. The corresponding equations of motion are:

and time translation. Ciliberto and Gollub did not specify
whether they were dealing with,(M) or Z,(MT) symme-
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R 2 9/24»2‘(5
Fig. 14. Our model of a four-legged animal. We have indicated the four @ (b 249/‘84.2!('4 ® q)
symmetry operations of thisidealized system:A is the left—right ex- (p (p @
changeB the front—hind exchang® denotes reflection of the pendulums, d) @
and T is time translation over one driving period. The head and tail are
supposed to be massless. (b (D

Fig. 15. The four basic modes of the four-pendulum model in Fig. 14, and
. . 1 ) their corresponding resonance tongues in thé)) plane. Also included are
G+ yO + T (g+a0?cosQt)sind,+ fg(9,,9,) the corresponding phase pictograms.

*alD1,94)=0, anima) this might also be the other way around. The fourth
basic mode, af)=2./g/l +2K,+2Kp, is the fastest one,
with all four springs in action.

In real life these four basic modes are known as the pronk,
+fa(92,93)=0, the bound, the pace, and the trot. The prfsie Fig. 163)]
(7) is a relatively rare gait, in which the animal propels itself

. . 1
G+ ydot 79+ a0? cosOt)sind,+ fg( Py, 94)

. . 1
D+ yds+ T (g+ a0? cosOt)sindz+ fg(d3,94)

+fa(93,9,)=0, : - < ;
L1
Gat yDat T (g+aQ? cosQU)sin 94+ fa(Da, 93) 44 ”‘?é KT(‘:‘E

+fa(94,91)=0. PRONK

The numbering of the legs is as in Fig. 14, and the ind&es

(@
andB indicate that the cross-wise springs are different from I g
the springs along the sides of the animal. This set of equa- ".
tions may look somewhat forbidding, but one thing at least is (’ b

( Bo

clear: Just like any system of four coupled oscillators, our
model has four basic modes. And these modes are associatec(b)
with four tongues of resonance in the,()) plane, as shown
in Fig. 15, where we have also included the corresponding
phase pictograms.

The first, slowest basic mode is the one in which all the
pendulums move in phase with each other, as if they were  ;,.¢
one single objectthe springs are inactiye The angular (©
eigenfrequency of this mode is precisely the same as that of %
one single penduluntnamely \/g/l), which means that the /“""”
tongue originates af)=2./g/l. In the second and third %
tongues half of the springswo out of foup are active. The
front—hind version originates d2 =29/l +2Kg, and the TROT
left—right version at)=2./g/l + 2K 5, so the order of these (@

two deDendS on the relative str_engthi@,ﬁ andKB' In Fig. Fig. 16. The four basic gaits, corresponding to the basic modes of our
15 we have taken.thelcrOSS'SpW@\? to be Somewhat stron-  four-pendulum modelta) pronk, (b) bound,(c) pace(or rack, and(d) trot.
ger than the longitudinalB) springs, butdepending on the The pictures of the latter three are adapted from Ref. 19.

UND
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stiff-leggedly through the air. It is used by startled deer and

antelopes, by playful kittens, and occasionally also by lla- 88 AxBxRx T }Cﬁg

mas, especially around dusk. Whole groups of llamas have “Hop” e

been seen to pronk back and forth across a field, or in a

circle, to play or to ward off predatofé. // \\

The second basic mode is called the bound, see Fif).16

Avristotle (in an early standard work on animal gaits, around OOAX BxRT  AxBT«RT  ATxBxRT  ATxBTxRT
350 B.C) called this “a kind of stumbling forwards.” He dd dod d)(p/% ofo) ﬁ(’
thought it would be hard to maintain, as indeed it is for larger d PQ de /i @0 /
animals, but for a number of small mammélke the ground Pronk Bound Pace Trot

/

The third basic modé¢Fig. 16c)] goes by the name of
pace, or rack. Also considered unsatisfactory by Aristotle !
(since the weight must be shifted all the time, following the

' i isi i -
squirrel depicted hejaghe bound is in fact the usual fast gait. 9 T \‘\ //,/

.

/ \:\\\

™~
//

\

14
\ ’

R, -

L AxRT ABT x RT ATxRT \
side of suppoit this is nevertheless the typical gait of cam- ’-’ ! b bQ OQ \
els. Other animals to which the pace comes naturally are Qe 0P Qo \
canines(dogs, coyotesand Icelandic horses. Most other b Rot. Gallop ! Walk ‘
horses have to be trained to do it, sometimes with a harness | . :
around their legs. N e !

The fourth basic mode is the trfig. 16d) ]. This is the \ BxRT  ---- BTxRT /
gait we met before, which race horses are able to maintain up B oa 0D Transv.
to admirable speeds. Sometimes, however, they “break into a . 0a QT Gauop
gallop”. The trot is also the gait by which dogs are judged in el ABxRT Pt
the show ring. e 0@ e

To find out how these pure modes interact, and how our Qo

qua,druPed can SW!tCh from the one tO the other, we e)(ploi}::ig. 17. The symmetry hierarchy of gaits corresponding to our four-
again the symmetrie@nd, more SpeQﬂcally, t_he group _the' pendulum model. The different gaits are shown by their group-theoretical
oretical structureof the system. This is a relatively new idea structure, by their phase pictograms, and by a sketch of the afémzept at

in gait analysi%l‘26 and has already proved to be very fruit- the level of the interaction gaits, where one sketch is not sufficient anymore
ful. In the present model there ango exchange symmetries: to characterize a gait, cf. Fig. L8The dashed lines indicate that the corre-
The exchange between left and right |d@$) and the ex- sponding three interaction gaits are not observed in practice.

change between front and hind le@). The first symmetry

is fairly perfect in most animals, but the second one is of

course only approximat@ head is not a tail, after allThen

there is the reflection symmetfg of the pendulums. The fortunate, since this symmetry is anything but perfect in real
average animal leg is admittedly less symmetric than a pemanimal$ and the basic modes may just as well be described
dulum, but some internal symmetry may nevertheless bgy AXB, AXBT, AT XB, andAT XBT. This brings about a
present, and this is represented®yAnd finally, of course, welcome economy in the daughter modes: There are pre-

we have the time-translation symmeffy ~ cisely six of them(the interaction modes, B, AB, ABT,
Once one has identified the symmetries of the system, it iAT, andBT, see also Ref. 28and that is all.

not difficult to construct the symmetry hierarchy. This is  The most important interaction mode is the walk
done in Fig. 17. The most symmetrical gait of all is the O(AT XRT), the common daughter of the pace and the trot. In
motion, corresponding to the full symmetry group thjs gait, the feet are placed in the order 1342 1342 1342 etc.
Z5(A)XZy(B)XZ,5(R)XZ5(T), or AXBXRXT for short.  (see Fig. 14 for our numbering conventjorFigure 18a)
This might be called the “hop.” The animal goes up and shows a walking horse. Not any two legs are in phase any-
down, but not forward, and for this reason it is not useful fOfmore' but they are still pairwise in Counter_phase_ This is the
locomotion. Impatient bulls before the start of a rodeo doprimordial form of locomotion, presumably used by the first
something of the kind, but our interest lies not with the hop.jJand animals(because of its stability: the center of mass is
We |n_1med|ately go on to the four modgs that can be derivejways within the triangle formed by the supporting legs
fromit, i.e., the ones that correspond with the four resonancend is still the prevailing gait at low speélThe popularity
tongues in the &,()) plane. These are of course just the of the walk may also have to do with the fact that it does not
basic modes, which are described by the subgroupmvolve the B symmetry, which(as we know is far from
AXBXRT, AXBTXRT, AT XBXRT, and AT XBTXRT, perfect in most animals. Crawling babies use this pattern too.
respectively. In the latter three the legs are pairwise in phas&o, whereas from a theoretical point of view the “hop” is the
and the two in-phase pairs move in exact counter-phase withasic gait, from a practical and evolutionary standpoint the
each other, as exemplified also by the phase pictograms. gait hierarchy starts with the walk.

As indicated in Fig. 17, every basic mode has 7 subgroups, Through the ages the animals have become faster, in an
3 of which (the interaction modesare shared with the other upward spiral of hunt and escape, and in the process have
three basic modes. This adds up to a total of 22 modes in thierought into practice almost all the gaits in the symmetry
third level of the lattice. Six of them are interaction modes,hierarchy®* An accelerating horse will typically go from a
and these are the ones that we are interested in. At this poimtalk to a trot and finally into a gallop. This sequence, which
it is good to note thaRT is present in all four basic modes, was beautifully corroborated in 1981 by the results of Hoyt
and hence does nothing to discriminate between them. Thignd Taylor, in their landmark experiment with horses on a
means that we do not really need tResymmetry(which is  treadmill?® can also be recognized in the symmetry hierar-
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Fig. 18. (a) A walking horse,(b) a galloping horsétransverse gallop and
(c) a galloping cheetaltrotary gallop, all from Ref. 19. Eight stages are

needed to fully characterize these gaits, whereas four were sufficient for the

more symmetric gaits of Fig. 16. The numbers indicate in which order the |pm—— ﬁ
legs are put on the ground. Walk: 1342. Transverse gallop: 1423. Rotary Waltk ?E&A
J——————————

gallop: 1234.
TROT

|————
Tr. Gallop
chy of Fig. 17. The walking horse goes into a trot by means turcation i . del quadruned her with th
of a symmetry-restoring bifurcation, and from there into a"'9: 19 Bifurcation diagram for our model quadruped, together with the

(t pgall The t I is ch terized b associated path through the,()) plane. The succession of stable gaits
ransversgga’iop. € transverse gallop IS characterized DY ,qing the sequence walk—trot—gallop observed in real horses. Note the

the pattern 1423 1423 1423 etc. Itis illustrated in Fighl8  nysteresis at the various transitiofop—pace, walk—trot, trot—gallppFor

On the basis of the symmetry hierarchy it is even possiblease of survey, the 0 motighop and the pure mode@lirect branches from
to speculate about the next evolutionary step. The horses dfe 0 motion have been denoted in capitals, and the interaction modes in
the future, in pursuit of still higher speeds, may go up ongower-case letters.
level again and learn to perform a boutgymmetry restor-
ing bifurcation. They may also go down one level, toward a
gait not depicted in Fig. 1%symmetry breaking bifurcation
Or, since this is also possible at the level of the gallop, they note that the bifurcations walk—trot and trot—gallop are
may escape from the hierarchy by means of a Hopf bifurcapysteretic: When the animal is accelerating ttiscontinu-
tion. This third option is particularly intriguing, since it ous switch from trot to gallop occurs at a higher speed than
would result in a gait with another periodicitie., not 2I),  the switch from gallop to trot when it slows down. This is
possibly even a quasiperiodic one. _ precisely as in real horsé3lt is also worth noting that the

In Fig. 19 we show a succession of gaits, based on ougnimal does not have to think about its steps; everything is
four-pendulum model, which contains all of the above ingregetermined by the particular arrangement of the four oscilla-
dients. We have chosen a path through thg)X) plane that  tors. The nervous system just has to intensify its sigithst
passes reasonably close by the mode interaction points cg, to increasea in order to follow the proper path through

I’e_sponding to the Walk and the t.ranSVerse galIOp FO”OWinghe (a'Q) p|and and the Sequence comes about automati_
this path, starting from the 0 motion or “hop,” our pendulum ¢4y,

animal first goes into a pacgn a rather abrupt wayand — Figure 19 depicts just one possible path through &€}
immediately afterwards switches to a walk. It duly exhibits plane that contains the walk—trot—gallop sequence, and we
the sequence do not claim that this one is better or more realistic than any

other. But it does show the point we want to make, namely
that the interactior(i.e., connection between the modes is
and becomes unstable before reaching the bound. Thus always established via common daughter modes in the sym-
seems, at least along this particular path, that apart from theaetry hierarchy. In other words, the “general rule” found in
physiological problems with the bound there is also a bifur-the previous sections is also valid in the present context. It
cational impediment. also shows, as noted before, that it is in the bifurcation dia-

walk—trot—transverse gallop,
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gram with its bent curves and its cross branctres in the  eral understanding is not enough and information is required
symmetry latticgé that the nonlinear nature of the system for a specific system, with specific values of the control pa-
becomes manifest. rameters, one has to face the full equations of motion.

One last remark: Apart from the walk and the transverse The third point is that mode interaction is all around us.
gallop, the only other interaction mode of practical impor- Apart from the examples we have mentioned so far, mode
tance is the rotaryor latera) gallop. It derives it name from interaction is found in the solidification of liquid crystalfs,
the fact that the feet are placed in the “rotational” order 1234in the transverse “sloshing” waves in a carfain the tearing
1234 1234 etc. Being the transition mode between the padestabilities in a tokamak plasnia,in the chaotic signal of
(a relatively slow gajtand the very swift bound, it is espe- the pulsating star R SCLﬁfand in many, many other sys-
cially suited for those quadrupeds that want to accelerate items. Indeed, as stated in the introduction, the world is full
one stroke over a large speed interval. The chefetab Fig.  of coupled nonlinear oscillators and, hence, mode interac-
18(c)] is a prominent user of this type of galldpThe re- tion.
maining three interaction modes in Fig. 17, which connect
the pronk to the other pure modes, do not seem to be favoreSCKNOWLEDGMENTS
by any known animalthat is why the corresponding lines
are dashedand the current language has no names for them. We are deeply indebted to Mark Kettenis, Jonathan Ross,
A reason for this unpopularity may be that the pronk is aEmile de Kleine, and Michel Oosterhof for their many con-
one-beat gait whereas the bound, pace and trot are two-belsibutions, their friendship, and their enthusiasm.

gaits: apparently the two kinds do not mix very well.
dElectronic mail: j.p.vanderweele@tn.utwente.nl
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